A dichotomous choice for metazoan cells is between proliferation and differentiation. Measuring tRNA pools in various cell types, we found two distinct subsets, one that is induced in proliferating cells, and repressed otherwise, and another with the opposite signature. Correspondingly, we found that genes serving cell-autonomous functions and genes involved in multicellularity obey distinct codon usage. Proliferation-induced and differentiation-induced tRNAs often carry anticodons that correspond to the codons enriched among the cell-autonomous and the multicellularity genes, respectively. Because mRNAs of cell-autonomous genes are induced in proliferation and cancer in particular, the concomitant induction of their codon-enriched tRNAs suggests coordination between transcription and translation. Histone modifications indeed change similarly in the vicinity of cell-autonomous genes and their corresponding tRNAs, and in multicellularity genes and their tRNAs, suggesting the existence of transcriptional programs coordinating tRNA supply and demand. Hence, we describe the existence of two distinct translation programs that operate during proliferation and differentiation.
Key Points• The intensified standard-ofcare regimens for younger patients with MCL do not overcome the deleterious effects of TP53 mutations.• MCLs with TP53 mutations should be considered for alternative frontline treatment.Despite recent advances in lymphoma treatment, mantle cell lymphoma (MCL) remains incurable, and we are still unable to identify patients who will not benefit from the current standard of care. Here, we explore the prognostic value of recurrent genetic aberrations in diagnostic bone marrow (BM) specimens from 183 younger patients with MCL from the Nordic MCL2 and MCL3 trials, which represent current standard-of-care regimens. In the univariate model, mutations of TP53 (11%) and NOTCH1 (4%), and deletions of TP53 (16%) and CDKN2A (20%), were significantly associated with inferior outcomes (together with MIPI, MIPI-c, blastoid morphology, and Ki67 > 30%); however, in multivariate analyses, only TP53 mutations (HR, 6.2; P < .0001) retained prognostic impact for overall survival (OS), whereas TP53 mutations (HR, 6.9; P < .0001) and MIPI-c high-risk (HR, 2.6; P 5 .003) had independent prognostic impact on time to relapse. TP53-mutated cases had a dismal outcome, with a median OS of 1.8 years, and 50% relapsed at 1.0 years, compared to a median OS of 12.7 years for TP53-unmutated cases (P < .0001). TP53 mutations were significantly associated with Ki67 > 30%, blastoid morphology, MIPI high-risk, and inferior responses to both induction-and high-dose chemotherapy. In conclusion, we show that TP53 mutations identify a phenotypically distinct and highly aggressive form of MCL with poor or no response to regimens including cytarabine, rituximab, and autologous stem-cell transplant (ASCT). We suggest patients with MCL should be stratified according to TP53 status, and that patients with TP53 mutations should be considered for experimental frontline trials exploring novel agents. (Blood. 2017;130(17):1903-1910
A cancer develops when a cell acquires specific growth advantages through the stepwise accumulation of heritable changes in gene function. Basically, this process is directed by changes in two different classes of genes: Tumor suppressor genes that inhibit cell growth and survival and oncogenes that promote cell growth and survival. Since several alterations are usually required for a cancer to fully develop, the malignant phenotype is determined by the compound status of tumor suppressor genes and oncogenes. Cancer genes may be changed by several mechanisms, which potentially alter the protein encoding nucleotide template, change the copy number of genes, or lead to increased gene transcription. Epigenetic alterations, which, by definition, comprise mitotically and meiotically heritable changes in gene expression that are not caused by changes in the primary DNA sequence, are increasingly being recognized for their roles in carcinogenesis. These epigenetic alterations may involve covalent modifications of amino acid residues in the histones around which the DNA is wrapped, and changes in the methylation status of cytosine bases (C) in the context of CpG dinucleotides within the DNA itself. Methylation of clusters of CpGs called ''CpG-islands'' in the promoters of genes has been associated with heritable gene silencing. The present review will focus on how disruption of the epigenome can contribute to cancer. In contrast to genetic alterations, gene silencing by epigenetic modifications is potentially reversible. Treatment by agents that inhibit cytosine methylation and histone deacetylation can initiate chromatin decondensation, demethylation and reestablishment of gene transcription. Accordingly, in the clinical setting, DNA methylation and histone modifications are very attractive targets for the development and implementation of new therapeutic approaches. Many clinical trials are ongoing, and epigenetic therapy has recently been approved by the United States Food and Drug Administration (US FDA) for use in the treatment of myelodysplastic syndrome (MDS) and primary cutaneous T-cell lymphoma (CTCL).
Cutaneous T-cell lymphomas (CTCLs) are the most frequent primary skin lymphomas. Nevertheless, diagnosis of early disease has proven difficult because of a clinical and histologic resemblance to benign inflammatory skin diseases. To address whether microRNA (miRNA) profiling can discriminate CTCL from benign inflammation, we studied miRNA expression levels in 198 patients with CTCL, peripheral T-cell lymphoma (PTL), and benign skin diseases (psoriasis and dermatitis). Using microarrays, we show that
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.