Endangered forest-grassland mosaics interspersed with expanding agriculture and silviculture occur across many parts of the world, including the southern Brazilian highlands. This natural mosaic ecosystem is thought to reflect alternative stable states driven by threshold responses of recruitment to fire and moisture regimes. The role of adaptive human behavior in such systems remains understudied, despite its pervasiveness and the fact that such ecosystems can exhibit complex dynamics. We develop a nonlinear mathematical model of coupled human-environment dynamics in mosaic systems and social processes regarding conservation and economic land valuation. Our objective is to better understand how the coupled dynamics respond to changes in ecological and social conditions. The model is parameterized with southern Brazilian data on mosaic ecology, land-use profits, and questionnaire results concerning landowner preferences and conservation values. We find that the mosaic presently resides at a crucial juncture where relatively small changes in social conditions can generate a wide variety of possible outcomes, including complete loss of mosaics; large-amplitude, long-term oscillations between land states that preclude ecosystem stability; and conservation of the mosaic even to the exclusion of agriculture/silviculture. In general, increasing the time horizon used for conservation decision making is more likely to maintain mosaic stability. In contrast, increasing the inherent conservation value of either forests or grasslands is more likely to induce large oscillations-especially for forests-due to feedback from rarity-based conservation decisions. Given the potential for complex dynamics, empirically grounded nonlinear dynamical models should play a larger role in policy formulation for humanenvironment mosaic ecosystems.
The forest-grassland mosaics of southern Brazil have been subject to many land use and policy changes over the decades. Like many grasslands around the world, the Campos grasslands are declining with few conservation efforts underway. In contrast, forests receive much attention and many incentives. It is hypothesized that perception of land cover has the potential to shape ecosystems. Here we conduct a questionnaire to further our understanding of decision-making practices that alter landscapes (Campos grassland, Araucaria forest, agriculture and plantation) and direct land policies in the region. Our analysis reveals that plantations are significantly less desirable than the other landscape types. However, plantation land use has increased by 87 % over the past few decades, as a result of industry and government incentives. The proportions of other landscape types have remained consistent over the past two decades. Restoration of native vegetation is not a priority of landowners and restoration would require a financial incentive.
The dependence of humans on nature has come into focus as the human population continues to grow, resources diminish and production technology stagnates – threatening human well‐being on a global scale. Numerous previous models describe human population dynamics, in relation to a multitude of different factors. However, there are no consistent driving factors of human demography through history, which makes predicting future changes more challenging. Here, we review the literature on human population growth from empirical data and previous models, which allows us to highlight key trends in demography and land cover changes. We then establish an ecologically driven theory of demographic change that uses resource accessibility as a proxy for socio‐economic factors. The theory combines multiple concepts to represent 12 millennia of past population dynamics through simple human–nature relationships. Furthermore, the model allows us to compare different scenarios related to technological progress and land cover change, for which we find that the peak human population is highly dependent on whether technological developments continue at an exponential growth rate, or if and when there is a saturation point. Likewise, agriculture is shown to be helpful for growing the population, but nature is ultimately needed to maintain the human population. A plain language summary is available for this article.
The ability of the human population to continue growing depends strongly on the ecosystem services provided by nature. Nature, however, is becoming more and more degraded as the number of individuals increases, which could potentially threaten the future well-being of the human population. We use a dynamic model to conceptualise links between the global proportion of natural habitats and human demography, through four categories of ecosystem services (provisioning, regulating, cultural recreational and informational) to investigate the common future of nature and humanity in terms of size and well-being. Our model shows that there is generally a trade-off between the quality of life and human population size and identifies four short-term scenarios, corresponding to three long-term steady states of the model. First, human population could experience declines if nature becomes too degraded and regulating services diminish; second the majority of the population could be in a famine state, where the population continues to grow with minimal food provision. Between these scenarios, a desirable future scenario emerges from the model. It occurs if humans convert enough land to feed all the population, while maintaining biodiversity and ecosystem services. Finally, we find a fourth scenario, which combines famine and a decline in the population because of an overexploitation of land leading to a decrease in food production. Human demography is embedded in natural dynamics; the two factors should be considered together if we are to identify a desirable future for both nature and humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.