Background
Stress-induced activation of the sympathetic nervous system leads to a cascade of metabolic reactions. Emotional stress is a more specific form of stress in which the stressor is a psychological response to a situation subjectively perceived as traumatic. Stress hormones can have a wide range of effects on the body, however, it is still unclear if and how it can affect ophthalmic physiology. This report presents a case of severe ocular hypertension in which emotional stress was the only cause elicited, and explores potential aggravating factors.
Case presentation
A 78-year-old, personality type A, lady with a history of pseudo-exfoliative glaucoma presented with an acute asymmetrical raise in intraocular pressure (IOP) immediately following a family breakdown. Her IOP had previously remained stable following a deep sclerectomy in the right eye and an Ex-PRESS shunt in the left eye. Her examination was entirely normal otherwise, with a patent filtration and diffuse bleb as confirmed with anterior segment OCT imaging. Near-normalisation of her IOP was observed within 24 h, concomitantly with the reduction of her stress levels. No other cause for the transient acute hypertensive episode were found.
Conclusions
This case report suggests that acute emotional stress could severely affect IOP in patients suffering from glaucoma. This could be important when looking after glaucoma patients. It would also suggest that the personnality types, and the emotional and social context are more factors to take into account in glaucoma studies. These observations are based on a single case report and would need to be verified on a larger scale.
This is the first report in which peripapillary vessel density is analyzed using OCTA technology for this entity. OCTA could confirm the diagnosis and has the potential to assist with the diagnosis and evaluation of progression of ONHD.
Purpose
To address the unmet need of continuous IOP monitoring, a Pressure-Measuring Contact Lens (PMCL) was developed to measure IOP in millimeters of mercury (mmHg) continuously over 24 hours. The present study assessed the reliability of the novel PMCL.
Methods
In this prospective open-label clinical study, healthy and open-angle glaucoma (OAG) subjects were fitted with the PMCL, and pneumatonometry was performed on study eyes (in absence of the PMCL) and on fellow eyes before, during, and after provocative tests. The primary outcome measures were (1) mean IOP difference between same-eye measurements, and (2) percentage of timepoints at which IOP measured by the PMCL was within 5 mmHg of that measured by pneumatonometry in the fellow eye.
Results
Eight subjects were analysed (4 healthy, 4 OAG). The average difference in successive IOP measurements made by pneumatonometry and with the PMCL was 2.0±4.3mmHg at placement-time, and 6.5±15.2mmHg at removal time. During water drinking test, a significant increase in IOP was detected both by PMCL in the study eye (2.4±2.5mmHg, p = 0.03) and by pneumatonometry in the fellow eye (1.9±1.9mmHg, p = 0.02). Over the 24-hour recording, 88.0% of IOP variations measured by the PMCL were within 5mmHg of that measured with the pneumatonometer in the fellow eye. A transient corneal erosion of severe intensity was observed following removal of the PMCL on one single eye, and may have affected measurement accuracy in that eye.
Conclusions
This study is a proof-of-concept for this novel PMCL, and its results are encouraging, with a fair accuracy in IOP values measurement and good sensitivity to subtle IOP variations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.