The selectivity of fishing gears with respect to fish species and size is important, both for fisheries management and fishing operations. Purse seining is an efficient, environmentally friendly fish capture methodology generally targeting single species aggregations, but once a fish school has been selected and surrounded by the seine, there is no selections for individual size, species or catch quantity. A common practice for evaluating the catch is to haul the seine to a point where physical samples or inspections of catch composition can be made. The release process is called slipping and may lead to mortality in the released fish. The objective of this study was to simulate a crowding situation and investigate how the behaviour was affected in response to increased fish density, decreased oxygen levels, or a combination of the two, and to see if there is a behavioural measure that can be used to set safe crowding limits. The experiment was conducted on Mackerel (Scomber scombrus) held in net pens. The volume of the net pen was reduced to increase fish density, and a tarpaulin bag was wrapped around the pen to reduce the oxygen levels. Oxygen, fish density and space occupancy was monitored during the experiment, and the behavioural reactions was assessed using an imaging sonar. The main result was that the schooling function, i.e. the response to a predator model, was significantly reduced during crowding but not in response to hypoxia. There were some indications of a slow recovery of the function post-treatment. We conclude that crowding causes behavioural responses that occur before densities that induce fish mortality. Consequently, there is a behavioural response that could be used as a proxy for setting safe crowding limits.
Stress to fish during harvest in wild capture fisheries is known to negatively influence subsequent survival in catches that are released. Therefore, if fisheries are to be conducted sustainably, there is a need to promote good fish welfare during the capture process. Purse seine fishing is a widespread and efficient fishing method. However, capture and release of fish from purse seines (a process called “slipping”) can result in extremely high mortality in small pelagic schooling species. The objective of this study was to establish behavioural indicators of sub-lethal stress in Atlantic mackerel (Scomber scombrus) that may be used to set safe threshold limits for use in commercial purse seine fishing, in order to ensure good fish welfare and thereby minimise slipping mortality. Controlled mesocosm scale experiments with schools of mackerel in net pens were undertaken to determine behavioural responses to simulated purse seine capture stressors of “crowding”, “hypoxia” and “crowding & hypoxia”. Crowding (at 30 kg.m-3) was achieved by reducing the volume of the net pen, while hypoxia (to 40% oxygen saturation) was achieved by surrounding the net pen with a tarpaulin bag to prevent water exchange. Using video analysis, we investigated behavioural responses in nearest neighbour distances, nearest neighbour angular deviations, tail beat amplitude and tail beat frequency (TBF). Of the metrics considered, only TBF showed a response; a significant increase to “crowding” (42% increase) and “crowding & hypoxia” (38% increase) was found. The increase in TBF in response to “hypoxia” alone (29% increase) was not significant. We therefore conclude that increases in tail beat frequency may be used as an indicator of sub-lethal purse seine capture stress in mackerel that may have utility in minimising post slipping mortality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.