Yeast can undergo cell death accompanied by cellular markers of apoptosis. However, orthologs of classical mammalian apoptosis regulators appeared to be missing from the yeast genome, challenging a common mechanism of yeast and mammalian apoptosis. Here we investigate Yor197w, a yeast protein with structural homology to mammalian caspases, and demonstrate caspase-like processing of the protein. Hydrogen peroxide treatment induces apoptosis together with a caspase-like enzymatic activity in yeast. This response is completely abrogated after disruption and strongly stimulated after overexpression of Yor197w. Yor197w also mediates the death process within chronologically aged cultures, pointing to a physiological role in elimination of overaged cells. We conclude that Yor197w indeed functions as a bona fide caspase in yeast and propose the name Yeast Caspase-1 (YCA1, gene YCA1).
Efficient engulfment of the intact cell corpse is a critical end point of apoptosis, required to prevent secondary necrosis and inflammation. The presentation of "eat-me" signals on the dying cell is an important part of this process of recognition and engulfment by professional phagocytes. Here, we present evidence that apoptotic cells secrete chemotactic factor(s) that stimulate the attraction of monocytic cells and primary macrophages. The activation of caspase-3 in the apoptotic cell was found to be required for the release of this chemotactic factor(s). The putative chemoattractant was identified as the phospholipid, lysophosphatidylcholine. Further analysis showed that lysophosphatidylcholine was released from apoptotic cells due to the caspase-3 mediated activation of the calcium-independent phospholipase A(2). These data suggest that in addition to eat-me signals, apoptotic cells display attraction signals to ensure the efficient removal of apoptotic cells and prevent postapoptotic necrosis.
The inefficient clearance of dying cells can result in the accumulation of apoptotic cell remnants. This occurrence is considered an intrinsic defect that can cause the permanent presence of cellular debris responsible for the initiation of systemic autoimmunity in diseases such as systemic lupus erythematosus (SLE). If postapoptotic debris accumulates in germinal centers, activates complement and functions as a survival signal for B cells that have become autoreactive by somatic hypermutation, autoimmunity could arise (etiology). The accumulation of postapoptotic remnants and fragments derived from secondary necrotic cells in the presence of autoantibodies against apoptotic cells or adaptor molecules obliges their pathological elimination and maintains autoinflammation. The autoimmunity that occurs in patients with SLE involves complex antigens that contain nucleic acids, which can function as virus mimetics. Complexes of autoantibodies, proteins and nucleic acids are likely to be mistaken by the immune system for opsonized viruses, resulting in the production of type I interferons, a hallmark of SLE (pathogenesis). The pathogenicity of autoantibodies is thought to strongly increase if autoantigens are accessible for immune-complex formation. The immune complex could be considered a binary pyrogen formed from less proinflammatory components. The accessibility of cognate autoantigens, in turn, is likely to be related to impaired or delayed clearance of apoptotic cells.
Coordinated navigation within tissues is essential for cells of the innate immune system to reach the sites of inflammatory processes, but the signals involved are incompletely understood. Here we demonstrate that NG2(+) pericytes controlled the pattern and efficacy of the interstitial migration of leukocytes in vivo. In response to inflammatory mediators, pericytes upregulated expression of the adhesion molecule ICAM-1 and released the chemoattractant MIF. Arteriolar and capillary pericytes attracted and interacted with myeloid leukocytes after extravasating from postcapillary venules, 'instructing' them with pattern-recognition and motility programs. Inhibition of MIF neutralized the migratory cues provided to myeloid leukocytes by NG2(+) pericytes. Hence, our results identify a previously unknown role for NG2(+) pericytes as an active component of innate immune responses, which supports the immunosurveillance and effector function of extravasated neutrophils and macrophages.
Although proteases of the caspase family are essential mediators of apoptosis in nucleated cells, in anucleate cells their presence and potential functions are almost completely unknown. Human erythrocytes are a major cell population that does not contain a cell nucleus or other organelles. However, during senescence they undergo certain morphological alterations resembling apoptosis. In the present study, we found that mature erythrocytes contain considerable amounts of caspase-3 and -8, whereas essential components of the mitochondrial apoptotic cascade such as caspase-9, Apaf-1 and cytochrome c were missing. Strikingly, although caspases of erythrocytes were functionally active in vitro, they failed to become activated in intact erythrocytes either during prolonged storage or in response to various proapoptotic stimuli. Following an increase of cytosolic calcium, instead the cysteine protease calpain but not caspases became activated and mediated fodrin cleavage and other morphological alterations such as cell shrinkage. Our results therefore suggest that erythrocytes do not have a functional death system. In addition, because of the presence of procaspases and the absence of a cell nucleus and mitochondria erythrocytes may be an attractive system to dissect the role of certain apoptosis-regulatory pathways. Cell Death and Differentiation (2001) 8, 1197 ± 1206.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.