Neuropeptides represent an important category of endogenous contributors to the establishment and maintenance of immune deviation in immune privileged organs such as the CNS, and in the control of acute inflammation in the peripheral immune organs. Vasoactive intestinal peptide (VIP) is a major immunoregulatory neuropeptide widely distributed in the central and peripheral nervous system. In addition to neurons, VIP is synthesized by immune cells which also express VIP receptors. Here we review the current information on VIP production and VIP receptor mediated effects in the immune system, the role of endogenous and exogenous VIP in inflammatory and autoimmune disorders, and present and future VIP therapeutic approaches.
Munro’s microabscesses contain polymorphonuclear leukocytes and form specifically in the epidermis of psoriasis patients. The mechanism whereby the neutrophils are recruited into the epidermis is poorly understood. Using a combination of human and mouse primary keratinocyte cell cultures and the imiquimod-induced psoriasis-like mouse model of skin inflammation we explored the role of interleukin-1 (IL-1) signaling in microabscess formation. In vitro imiquimod stimulated production of IL-1α and neutrophil recruiting chemokines. Imiquimod activated chemokine expression was dependent upon adenosine signaling and independent of IL-1α and IL-1 receptor type 1 (IL-1R1); nevertheless, IL-1α could enhance chemokine expression initiated by imiquimod. Topical application of imiquimod in vivo led to epidermal microabscess formation, acanthosis and increased IL-1α and chemokine expression in the skin of wild type mice. However, in IL-1R1 deficient mice these responses were either absent or dramatically reduced. These results demonstrate that IL-1α and IL-1R1 signaling is essential for microabscess formation, neutrophil recruiting chemokine expression and acanthosis in psoriasis-like skin inflammation induced by imiquimod.
MS is an autoimmune disease characterized by immune cell infiltration in the CNS, leading to cumulative disability. IFN-β, used clinically in RR-MS reduces lesion formation and rates of relapse. Although the molecular mechanisms are not entirely elucidated, myeloid cells appear to be a major target for the therapeutic effects of IFN-β. DCs have a critical role in experimental models of MS through their effect on encephalitogenic Th1/Th17 cell differentiation and expansion. Here we focused on the effects of IFN-β on DC expression of cytokines involved in the control of Th1/Th17 differentiation and expansion. Administration of IFN-β to mice immunized with MOG35-55 inhibited IL-12 and IL-23 expression in splenic DC and reduced in vivo differentiation of Th1/Th17 cells. IFN-β affected cytokine expression in TLR-stimulated DC in a similar manner in vitro, inhibiting IL-12 and IL-23 and stimulating IL-10 at both mRNA and protein levels, by signaling through IFNAR. We investigated the role of the signaling molecules STAT1/STAT2, IRF-1 and IRF-7, and of the PI3K→GSK3 pathway. IFN-β inhibition of the IL-12 subunits p40 and p35 was mediated through STAT1/STAT2, whereas inhibition of IL-23 was STAT1 dependent, and the stimulatory effect on IL-10 expression was mediated through STAT2. IFN-β induces IRF-7 and, to a lesser degree, IRF-1. However, neither IRF mediated the effects of IFN-β on IL-12, IL-23, or IL-10. We found that the PI3K pathway mediated IL-12 inhibition but did not interfere with the inhibition of IL-23 or stimulation of IL-10.
Glioblastomas are primary intracranial tumors for which there is no cure. Patients receiving standard of care, chemotherapy and irradiation, survive approximately 15 months prompting studies of alternative therapies including vaccination. In a pilot study, a vaccine consisting of Lucite diffusion chambers containing irradiated autologous tumor cells pre-treated with an antisense oligodeoxynucleotide (AS-ODN) directed against the insulin-like growth factor type 1 receptor was found to elicit positive clinical responses in 8/12 patients when implanted in the rectus sheath for 24 h. Our preliminary observations supported an immune response, and we have since reopened a second Phase 1 trial to assess this possibility among other exploratory objectives. The current study makes use of a murine glioma model and samples from glioblastoma patients in this second Phase 1 trial to investigate this novel therapeutic intervention more thoroughly. Implantation of the chamber-based vaccine protected mice from tumor challenge, and we posit this occurred through the release of immunostimulatory AS-ODN and antigen-bearing exosomes. Exosomes secreted by glioblastoma cultures are immunogenic, eliciting and binding antibodies present in the sera of immunized mice. Similarly, exosomes released by human glioblastoma cells bear antigens recognized by the sera of 6/12 patients with recurrent glioblastomas. These results suggest that the release of AS-ODN together with selective release of exosomes from glioblastoma cells implanted in chambers may drive the therapeutic effect seen in the pilot vaccine trial.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.