The Erzgebirge, part of the so-called former "Black Triangle", used to represent the strongest regional air pollution of Central Europe. To test the hypothesis of deposition enhancement with height, an altitudinal gradient along a N-S transect from the Elbe river lowlands to the Erzgebirge summit was chosen to investigate chemical composition, elevation-related variability, temporal changes, and seasonal patterns of ion concentrations from 1993 to 2002. The following questions were to be answered: (1) Which role does orography play on the composition of precipitation?, (2) Does fog occurrence overrule the orographic influence?, (3) Are there changes in the past 10 years, and if so, why?, (4) Do relevant seasonal changes occur and why?Air streams from westerly and to a lesser degree south-easterly directions prevail. The average precipitation was ion-poor (23 μS cm −1 ) and acidic (pH 4.5). Sulphate still was the dominant anion (52.3-59.9 μeq L −1 ), while NH + 4 determined the cations (41.9-62.2 μeq L −1 ). Ion concentrations decreased with altitude to about 735 m a.s.l. and subsequently increased. The seeder-feeder effect largely explains the chemical composition of precipitation; enhanced in winter through snow crystals. Sub-cloud scavenging does not explain the observed patterns. Fog occurrence enhanced the observed effects at higher altitudes. Deposition amounts doubled from the lowlands to the Erzgebirge summit. From 1993 to 2002, acidity decreased by about 50%, mainly due to reduced SO 2 -emissions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.