In memory of W. J. StuddenIn a recent paper Yang and Stufken [Ann. Statist. 40 (2012a) 1665-1685] gave sufficient conditions for complete classes of designs for nonlinear regression models. In this note we demonstrate that there is an alternative way to validate this result. Our main argument utilizes the fact that boundary points of moment spaces generated by Chebyshev systems possess unique representations.
We consider the optimal design problem for a comparison of two regression curves, which is used to establish the similarity between the dose response relationships of two groups. An optimal pair of designs minimizes the width of the confidence band for the difference between the two regression functions. Optimal design theory (equivalence theorems, efficiency bounds) is developed for this non standard design problem and for some commonly used dose response models optimal designs are found explicitly. The results are illustrated in several examples modeling dose response relationships. It is demonstrated that the optimal pair of designs for the comparison of the regression curves is not the pair of the optimal designs for the individual models. In particular it is shown that the use of the optimal designs proposed in this paper instead of commonly used “non-optimal” designs yields a reduction of the width of the confidence band by more than 50%.
In this paper optimal designs for regression problems with spherical predictors of arbitrary dimension are considered. Our work is motivated by applications in material sciences, where crystallographic textures such as the missorientation distribution or the grain boundary distribution (depending on a four dimensional spherical predictor) are represented by series of hyperspherical harmonics, which are estimated from experimental or simulated data. For this type of estimation problems we explicitly determine optimal designs with respect to Kiefers Φ p -criteria and a class of orthogonally invariant information criteria recently introduced in the literature. In particular, we show that the uniform distribution on the m-dimensional sphere is optimal and construct discrete and implementable designs with the same information matrices as the continuous optimal designs. Finally, we illustrate the advantages of the new designs for series estimation by hyperspherical harmonics, which are symmetric with respect to the first and second crystallographic point group.
We consider the problem of efficient statistical inference for comparing two regression curves estimated from two samples of dependent measurements. Based on a representation of the best pair of linear unbiased estimators in continuous time models as a stochastic integral, an efficient pair of linear unbiased estimators with corresponding optimal designs for finite sample size is constructed. This pair minimises the width of the confidence band for the difference between the estimated curves. We thus extend results readily available in the literature to the case of correlated observations and provide an easily implementable and efficient solution. The advantages of using such pairs of estimators with corresponding optimal designs for the comparison of regression models are illustrated via numerical examples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.