Objective To assess the effect of a multimodal group exercise intervention, as an adjunct to conventional care, on fatigue, physical capacity, general wellbeing, physical activity, and quality of life in patients with cancer who were undergoing adjuvant chemotherapy or treatment for advanced disease. Results Adjusted for baseline score, disease, and demographic covariates, the intervention group showed an estimated improvement at six weeks for the primary outcome, fatigue, of −6.6 points (95% confidence interval −12.3 to −0.9, P=0.02; effect size=0.33, 0.04 to 0.61). Significant effects were seen on vitality (effect size 0.55, 95% CI 0.27 to 0.82), physical functioning (0.37, 0.09 to 0.65), role physical (0.37, 0.10 to 0.64), role emotional (0.32, 0.05 to 0.59), and mental health (0.28, 0.02 to 0.56) scores. Improvement was noted in physical capacity: estimated mean difference between groups for maximum oxygen consumption was 0.16 l/min (95% CI 0.1 to 0.2, P<0.0001) and for muscular strength (leg press) was 29.7 kg (23.4 to 34.9, P<0.0001). No significant effect was seen on global health status/quality of life. Conclusion A supervised multimodal exercise intervention including high and low intensity components was feasible and could safely be used in patients with various cancers who were receiving adjuvant chemotherapy or treatment for advanced disease. The intervention reduced fatigue and improved vitality, aerobic capacity, muscular strength, and physical and functional activity, and emotional wellbeing, but not quality of life. Trial registration Current Controlled trials ISRCTN05322922.
Oxidative DNA damage may be implicated in ageing, carcinogenesis and other degenerative diseases. Oxidative DNA damage can be assessed in humans in vivo from the urinary excretion of the DNA-repair product 8-hydroxydeoxyguanosine (8OHdG). We investigated factors influencing the excretion of 8OHdG in 24 h urine from 83 randomly selected healthy subjects (52 women) aged 40-64 years. For 2 weeks prior to urine collection the subjects kept a weighed diet record. 8OHdG was quantified by an automatic three-dimensional HPLC analysis with electrochemical detection. The 8OHdG excretion was 252 +/- 103 (mean +/- SD) pmol kg body weight/24 h with a range from 78 to 527. Multiple regression analysis identified three factors, smoking, body mass index (BMI) and gender, as significant predictors of the 8OHdG excretion. In 30 smokers the 8OHdG excretion was 320 +/- 99 pmol/kg/24 h opposed to 213 +/- 84 pmol/kg/24 h in 53 non-smokers. According to multiple regression analysis smokers excreted 50% (31-69%; 95% confidence interval) more 8OHdG than non-smokers. In 52 women the 8OHdG excretion was 240 +/- 106 pmol/kg/24 h opposed to 271 +/- 96 pmol/kg/24 h in 31 men. According to the multiple regression analysis men excreted 29% (10-48%) more 8OHdG than women. According to multiple regression analysis the 8OHdG excretion decreased with 4% (2-6%) per increment in BMI measured in kg/m2. The dietary distribution of energy demonstrated no important predictive value with respect to 8OHdG excretion. The intake of the antioxidant vitamins C and E and of vitamin A equivalents, including beta-carotene, was not associated with 8OHdG excretion. The results suggest that smoking increases oxidative DNA damage by approximately 50%. This effect implies potential serious health effects adding to the other well-known health hazards of smoking. The higher 8OHdG excretion in men and lean subjects may be related to a higher rate of metabolism with increased availability of reactive oxygen species. The apparent 7-fold individual variation in oxidative DNA damage carries implications regarding the rate of ageing and the risk of cancer and other degenerative diseases. The excretion of 8OHdG into urine offers a valuable tool for testing such hypotheses in humans.
BackgroundCardiotoxicity is a serious side effect to treatment with 5-fluorouracil (5-FU), but the underlying mechanisms are not fully understood. The objective of this systematic review was to evaluate the pathophysiology of 5-FU- induced cardiotoxicity.MethodsWe systematically searched PubMed for articles in English using the search terms: 5-FU OR 5-fluorouracil OR capecitabine AND cardiotoxicity. Papers evaluating the pathophysiology of this cardiotoxicity were included.ResultsWe identified 27 articles of 26 studies concerning the pathophysiology of 5-FU-induced cardiotoxicity. The studies demonstrated 5-FU-induced: hemorrhagic infarction, interstitial fibrosis and inflammatory reaction in the myocardium; damage of the arterial endothelium followed by platelet aggregation; increased myocardial energy metabolism and depletion of high energy phosphate compounds; increased superoxide anion levels and a reduced antioxidant capacity; vasoconstriction of arteries; changes in red blood cell (RBC) structure, function and metabolism; alterations in plasma levels of substances involved in coagulation and fibrinolysis and increased endothelin-1 levels and N-terminal-pro brain natriuretic peptide levels. Based on these findings the proposed mechanisms are: endothelial injury followed by thrombosis, increased metabolism leading to energy depletion and ischemia, oxidative stress causing cellular damage, coronary artery spasm leading to myocardial ischemia and diminished ability of RBCs to transfer oxygen resulting in myocardial ischemia.ConclusionsThere is no evidence for a single mechanism responsible for 5-FU-induced cardiotoxicity, and the underlying mechanisms might be multifactorial. Further research is needed to elucidate the pathogenesis of this side effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.