Workers in the drilling section of the offshore petroleum industry are exposed to air pollutants generated by drilling fluids. Oil mist and oil vapour concentrations have been measured in the drilling fluid processing areas for decades; however, little work has been carried out to investigate exposure determinants such as drilling fluid viscosity and temperature. A study was undertaken to investigate the effect of two different oil-based drilling fluid systems and their temperature on oil mist, oil vapour, and total volatile organic compounds (TVOC) levels in a simulated shale shaker room at a purpose-built test centre. Oil mist and oil vapour concentrations were sampled simultaneously using a sampling arrangement consisting of a Millipore closed cassette loaded with glass fibre and cellulose acetate filters attached to a backup charcoal tube. TVOCs were measured by a PhoCheck photo-ionization detector direct reading instrument. Concentrations of oil mist, oil vapour, and TVOC in the atmosphere surrounding the shale shaker were assessed during three separate test periods. Two oil-based drilling fluids, denoted 'System 2.0' and 'System 3.5', containing base oils with a viscosity of 2.0 and 3.3-3.7 mm(2) s(-1) at 40°C, respectively, were used at temperatures ranging from 40 to 75°C. In general, the System 2.0 yielded low oil mist levels, but high oil vapour concentrations, while the opposite was found for the System 3.5. Statistical significant differences between the drilling fluid systems were found for oil mist (P = 0.025),vapour (P < 0.001), and TVOC (P = 0.011). Increasing temperature increased the oil mist, oil vapour, and TVOC levels. Oil vapour levels at the test facility exceeded the Norwegian oil vapour occupational exposure limit (OEL) of 30 mg m(-3) when the drilling fluid temperature was ≥50°C. The practice of testing compliance of oil vapour exposure from drilling fluids systems containing base oils with viscosity of ≤2.0 mm(2) s(-1) at 40°C against the Norwegian oil vapour OEL is questioned since these base oils are very similar to white spirit. To reduce exposures, relevant technical control measures in this area are to cool the drilling fluid <50°C before it enters the shale shaker units, enclose shale shakers and related equipment, in addition to careful consideration of which fluid system to use.
Purpose Workers on offshore petroleum installations are at risk of being exposed to benzene which is carcinogenic to humans. The present study aimed to assess the time trend of full-shift benzene exposure from 2002 to 2018 in order to characterize benzene exposure among laboratory technicians, mechanics, process operators, and industrial cleaners, and to examine the possible determinants of benzene exposure. Methods A total of 924 measurements of benzene exposure from the Norwegian petroleum offshore industry were included. The median sampling duration was 680 min, ranging from 60 to 940 min. The overall geometric mean (GM) and 95% confidence interval, time trends, and determinants of exposure were estimated using multilevel mixed-effects tobit regression analyses. Time trends were estimated for sampling duration below and above 8 h, both overall and for job groups. The variability of exposure between installation and workers was investigated in a subset of data containing worker identification. Results The overall GM of benzene exposure was 0.004 ppm. When adjusting for job group, design of process area, season, wind speed, and sampling duration, industrial cleaners had the highest exposure (GM = 0.012). Laboratory technicians, mechanics, and process operators had a GM exposure of 0.004, 0.003, and 0.004 ppm, respectively. Overall, the measured benzene exposure increased by 7.6% per year from 2002 to 2018. Mechanics had an annual increase of 8.6% and laboratory technicians had an annual decrease of 12.6% when including all measurements. When including only measurements above 8 h, mechanics had an increase of 16.8%. No statistically significant time trend was found for process operators. Open process area, high wind speed, and wintertime were associated with reduced exposure level. Conclusions An overall increase in measured exposure was observed from 2002 to 2018. The increase may reflect changes in measurement strategy from mainly measuring on random days to days with expected exposure. However, the time trend varied between job groups and was different for sampling duration above or below 8 h. Industrial cleaners had the highest exposure of the four job groups while no differences in exposure were observed between laboratory technicians, mechanics, and process operators. The design of the process area, job group, wind speed, and season were all significant determinants of benzene exposure.
There is a need to develop a harmonized method for the quantification of oil mist on filter and oil vapour on charcoal supported by a suitable proficiency testing scheme for laboratories involved in the analysis of occupational hygiene samples for the petroleum industry. The uncertainties in oil mist and vapour measurement have substantial implications in relation to compliance with occupational exposure limits and also in the reliability of any exposure-response information reported in epidemiological studies.
Objectives Work on offshore petroleum installations may cause exposure to benzene. Benzene is a carcinogenic agent, and exposure among workers should be as low as reasonably practicable. We aimed to assess short-term (less than 60 min) benzene exposure from the most frequent work tasks on offshore installations on the Norwegian continental shelf and identify determinants of exposure. In addition, we aimed to assess the time trend in task-based benzene measurements from 2002 to 2018. Methods The study included 763 task-based measurements with a sampling duration of less than 60 min, collected on 28 offshore installations from 2002 to 2018. The measurements were categorized into 10 different tasks. Multilevel mixed-effect Tobit regression models were developed for two tasks: sampling and disassembling/assembling equipment. Benzene source, season, indoors or outdoors, design of process area, year of production start, sampling method, and work operation were considered as potential determinants for benzene exposure in the models. Results The overall geometric mean (GM) benzene exposure was 0.02 ppm (95% confidence intervals 95%(CI: 0.01–0.04). The pipeline inspection gauge (PIG) operation task was associated with the highest exposure, with a GM of 0.33 ppm, followed by work on flotation cells, disassembling/assembling, and sampling, with GMs of 0.16, 0.04, and 0.01 ppm, respectively. Significant determinants for the disassembling/assembling task were work operation (changing or recertifying valves, changing or cleaning filters, and breaking pipes) and benzene source. For sampling, the benzene source was a significant determinant. Overall, the task-based benzene exposure declined annually by 10.2% (CI 95%: −17.4 to −2.4%) from 2002 to 2018. Conclusions The PIG operation task was associated with the highest exposure out of the ten tasks, followed by work on flotation cells and when performing disassembling/assembling of equipment. The exposure was associated with the type of benzene source that was worked on. Despite the decline in task-based exposure in 2002–2018, technical measures should still be considered in order to reduce the exposure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.