Tomatoes are the fourth most commonly consumed fresh vegetable and the most frequently consumed canned vegetable in the American diet. There is emerging epidemiology data supporting the connection between increased tomato consumption and reduced risk for both cardiovascular disease and prostate cancer. Here we will summarize the nutrient and the phytochemical content of tomatoes and tomato products, and how these bioactive components might act together to modulate disease development. Recent animal studies have investigated tomatoes, lycopene, and prostate cancer using the N-methyl-N-nitrosourea and Dunning rat models. These animal studies also suggest that diets containing tomatoes may decrease the risk or the progression of prostate cancer. Due to the frequency and the extent of tomato consumption, the supporting epidemiological and animal data, which connect increased intakes with decreased cancer and cardiovascular disease risk, tomato's role in the American diet is of undeniable importance as part of a healthy diet.
The consumption of diets containing 5 to 10 servings of fruits and vegetables daily is the foundation of public health recommendations for cancer prevention, yet this concept has not been tested in experimental models of prostate cancer. We evaluated combinations of tomato and broccoli in the Dunning R3327-H prostate adenocarcinoma model. Male Copenhagen rats (n = 206) were fed diets containing 10% tomato, 10% broccoli, 5% tomato plus 5% broccoli (5:5 combination), 10% tomato plus 10% broccoli (10:10 combination) powders, or lycopene (23 or 224 nmol/g diet) for f22 weeks starting 1 month prior to receiving s.c. tumor implants. We compared the effects of diet to surgical castration (2 weeks before termination) or finasteride (5 mg/kg body weight orally, 6 d/wk). Castration reduced prostate weights, tumor areas, and tumor weight (62%, P < 0.001), whereas finasteride reduced prostate weights (P < 0.0001), but had no effect on tumor area or weight. Lycopene at 23 or 224 nmol/g of the diet insignificantly reduced tumor weights by 7% or 18%, respectively, whereas tomato reduced tumor weight by 34% (P < 0.05). Broccoli decreased tumor weights by 42% (P < 0.01) whereas the 10:10 combination caused a 52% decrease (P < 0.001). Tumor growth reductions were associated with reduced proliferation and increased apoptosis, as quantified by proliferating cell nuclear antigen immunohistochemistry and the ApopTag assay. The combination of tomato and broccoli was more effective at slowing tumor growth than either tomato or broccoli alone and supports the public health recommendations to increase the intake of a variety of plant components. [Cancer Res 2007;67(2):836-43]
Mounting evidence over the past decade suggests that the consumption of fresh and processed tomato products is associated with reduced risk of prostate cancer. The emerging hypothesis is that lycopene, the primary red carotenoid in tomatoes, may be the principle phytochemical responsible for this reduction in risk. A number of potential mechanisms by which lycopene may act have emerged, including serving as an important in vivo antioxidant, enhancing cell-to-cell communication via increasing gap junctions between cells, and modulating cell-cycle progression. Although the effect of lycopene is biologically relevant, the tomato is also an excellent source of nutrients, including folate, vitamin C, and various other carotenoids and phytochemicals, such as polyphenols, which also may be associated with lower cancer risk. Tomatoes also contain significant quantities of potassium, as well as some vitamin A and vitamin E. Our laboratory has been interested in identifying specific components or combination of components in tomatoes that are responsible for reducing prostate cancer risk. We carried out cell culture trials to evaluate the effects of tomato carotenoids and tomato polyphenols on growth of prostate cancer cells. We also evaluated the ability of freeze-dried whole-tomato powder or lycopene alone to reduce growth of prostate tumors in rats. This paper reviews the epidemiological evidence, evaluating the relationship between prostate cancer risk and tomato consumption, and presents experimental data from this and other laboratories that support the hypothesis that whole tomato and its phytochemical components reduce the risk of prostate cancer.
In vitro lycopene is the most potent antioxidant among carotenoids. While antioxidant function may be relevant to health, we hypothesize that metabolites of lycopene may be bioactive and responsible for the beneficial effects of tomato product consumption. We term these metabolites "lycopenoids," which we believe may be produced from carotenoid monooxygenase (CMO) II, paralleling the production of retinoids from beta-carotene by CMO I. We present evidence suggesting that tomato carotenoid metabolites may be responsible for the reduced risk of prostate cancer seen in men consuming high levels of tomato products. Finally, we identify gaps in knowledge in this evolving area of carotenoid research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.