The secreted Mycobacterium tuberculosis complex proteins CFP-10 and ESAT-6 have recently been shown to play an essential role in tuberculosis pathogenesis. We have determined the solution structure of the tight, 1:1 complex formed by CFP-10 and ESAT-6, and employed fluorescence microscopy to demonstrate specific binding of the complex to the surface of macrophage and monocyte cells. A striking feature of the complex is the long flexible arm formed by the C-terminus of CFP-10, which was found to be essential for binding to the surface of cells. The surface features of the CFP-10·ESAT-6 complex, together with observed binding to specific host cells, strongly suggest a key signalling role for the complex, in which binding to cell surface receptors leads to modulation of host cell behaviour to the advantage of the pathogen
The Mycobacterium tuberculosis complex CFP-10/ESAT-6 family proteins play essential but poorly defined roles in tuberculosis pathogenesis. In this article we report the results of detailed spectroscopic studies of several members of the CFP-10/ESAT-6 family. This work shows that the CFP-10/ESAT-6 related proteins, Rv0287 and Rv0288, form a tight 1:1 complex, which is predominantly helical in structure and is predicted to closely resemble the complex formed by CFP-10 and ESAT-6. In addition, the Rv0287⅐Rv0288 complex was found to be significantly more stable to both chemical and temperature induced denaturation than CFP-10⅐ESAT-6. This approach demonstrated that neither Rv0287⅐Rv0288 nor the CFP-10⅐ESAT-6 complexes are destabilized at low pH (4.5), indicating that even in low pH environments, such as the mature phagosome, both Rv0287⅐Rv0288 and CFP-10⅐ESAT-6 undoubtedly function as complexes rather than individual proteins. Analysis of the structure of the CFP-10⅐ESAT-6 complex and optimized amino acid sequence alignments of M. tuberculosis CFP-10/ESAT-6 family proteins revealed that residues involved in the intramolecular contacts between helices are conserved across the CFP-10/ ESAT-6 family, but not those involved in primarily intermolecular contacts. This analysis identified the molecular basis for the specificity and stability of complex formation between CFP-10/ ESAT-6 family proteins, and indicates that the formation of functional complexes with key roles in pathogenesis will be limited to genome partners, or very closely related family members, such as Rv0287/Rv0288 and Rv3019c/Rv3020c.
Mycobacterium tuberculosis encodes five type VII secretion systems that are responsible for exporting a number of proteins, including members of the Esx family, which have been linked to tuberculosis pathogenesis and survival within host cells. The gene cluster encoding ESX-3 is regulated by the availability of iron and zinc, and secreted protein products such as the EsxG·EsxH complex have been associated with metal ion acquisition. EsxG and EsxH have previously been shown to form a stable 1:1 heterodimeric complex, and here we report the solution structure of the complex, which features a core four-helix bundle decorated at both ends by long, highly flexible, N- and C-terminal arms that contain a number of highly conserved residues. Despite clear similarities in the overall backbone fold to the EsxA·EsxB complex, the structure reveals some striking differences in surface features, including a potential protein interaction site on the surface of the EsxG·EsxH complex. EsxG·EsxH was also found to contain a specific Zn2+ binding site formed from a cluster of histidine residues on EsxH, which are conserved across obligate mycobacterial pathogens including M. tuberculosis and Mycobacterium leprae. This site may reflect an essential role in zinc ion acquisition or point to Zn2+-dependent regulation of its interaction with functional partner proteins. Overall, the surface features of both the EsxG·EsxH and the EsxA·EsxB complexes suggest functions mediated via interactions with one or more target protein partners.
Background: Tapeworm infections pose a significant threat to equine health as they are associated with clinical cases of colic. Diagnosis of tapeworm burden using fecal egg counts (FECs) is unreliable, and, although a commercial serologic ELISA for anti-tapeworm antibodies is available, it requires a veterinarian to collect the blood sample. A reliable diagnostic test using an owner-accessible sample such as saliva could provide a cost-effective alternative for tapeworm testing in horses, and allow targeted deworming strategies. Objectives: The purpose of the study was to statistically validate a saliva tapeworm ELISA test and compare to a tapeworm-specific IgG(T) serologic ELISA. Methods: Serum samples (139) and matched saliva samples (104) were collected from horses at a UK abattoir. The ileocecal junction and cecum were visually examined for tapeworms and any present were counted. Samples were analyzed using a serologic ELISA and the saliva tapeworm test. The test results were compared to tapeworm numbers and the various data sets were statistically analyzed. Results: Saliva scores had strong positive correlations with both infection intensity (0.74) and serologic results (Spearman's rank coefficients; 0.74 and 0.86, respectively). The saliva tapeworm test was capable of identifying the presence of one or more tapeworms with 83% sensitivity and 85% specificity. Importantly, no high-burden (more than 20 tapeworms) horses were misdiagnosed. Conclusions: The saliva tapeworm test has statistical accuracy for detecting tapeworm burdens in horses with 83% sensitivity and 85% specificity, similar to those of the serologic ELISA (85% and 78%, respectively).
We have previously shown that the secreted M. tuberculosis complex proteins CFP-10 and ESAT-6 form a tight, 1:1 complex, which may represent their functional form. In the work reported here a combination of yeast two-hybrid and biochemical analysis has been used to characterise complex formation between two other pairs of CFP-10/ESAT-6 family proteins (Rv0287/Rv0288 and Rv3019c/Rv3020c) and to determine whether complexes can be formed between non-genome paired members of the family. The results clearly demonstrate that Rv0287/Rv0288 and Rv3019c/3020c form tight complexes, as initially observed for CFP-10/ESAT-6. The closely related Rv0287/Rv0288 and Rv3019c/Rv3020c proteins are also able to form non-genome paired complexes (Rv0287/Rv3019c and Rv0288/Rv3020c), but are not capable of binding to the more distantly related CFP-10/ESAT-6 proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.