Mood disorders are inherently related to emotion. In particular, the behaviour of people suffering from mood disorders such as unipolar depression shows a strong temporal correlation with the affective dimensions valence and arousal. In addition, psychologists and psychiatrists take the observation of expressive facial and vocal cues into account while evaluating a patient's condition. Depression could result in expressive behaviour such as dampened facial expressions, avoiding eye contact, and using short sentences with flat intonation. It is in this context that we present the third Audio-Visual Emotion recognition Challenge (AVEC 2013). The challenge has two goals logically organised as sub-challenges: the first is to predict the continuous values of the affective dimensions valence and arousal at each moment in time. The second sub-challenge is to predict the value of a single depression indicator for each recording in the dataset. This paper presents the challenge guidelines, the common data used, and the performance of the baseline system on the two tasks.
Mood disorders are inherently related to emotion. In particular, the behaviour of people suffering from mood disorders such as unipolar depression shows a strong temporal correlation with the affective dimensions valence, arousal and dominance. In addition to structured self-report questionnaires, psychologists and psychiatrists use in their evaluation of a patient's level of depression the observation of facial expressions and vocal cues. It is in this context that we present the fourth Audio-Visual Emotion recognition Challenge (AVEC 2014). This edition of the challenge uses a subset of the tasks used in a previous challenge, allowing for more focussed studies. In addition, labels for a third dimension (Dominance) have been added and the number of annotators per clip has been increased to a minimum of three, with most clips annotated by 5. The challenge has two goals logically organised as sub-challenges: the first is to predict the continuous values of the affective dimensions valence, arousal and dominance at each moment in time. The second is to predict the value of a single self-reported severity of depression indicator for each recording in the dataset. This paper presents the challenge guidelines, the common data used, and the performance of the baseline system on the two tasks.
Purpose Burns depth evaluation is a lifesaving task and very challenging that requires objective techniques to accomplish. While the visual assessment is the most commonly used by surgeons, its accuracy reliability ranges between 60 and 80% and subjective that lacks any standard guideline. Currently, the only standard adjunct to clinical evaluation of burn depth is Laser Doppler Imaging (LDI) which measures microcirculation within the dermal tissue, providing the burns potential healing time which correspond to the depth of the injury achieving up to 100% accuracy. However, the use of LDI is limited due to many factors including high affordability and diagnostic costs, its accuracy is affected by movement which makes it difficult to assess paediatric patients, high level of human expertise is required to operate the device, and 100% accuracy possible after 72 h. These shortfalls necessitate the need for objective and affordable technique. Method In this study, we leverage the use of deep transfer learning technique using two pretrained models ResNet50 and VGG16 for the extraction of image patterns (ResFeat50 and VggFeat16) from a a burn dataset of 2080 RGB images which composed of healthy skin, first degree, second degree and third-degree burns evenly distributed. We then use One-versus-One Support Vector Machines (SVM) for multi-class prediction and was trained using 10-folds cross validation to achieve optimum trade-off between bias and variance. Results The proposed approach yields maximum prediction accuracy of 95.43% using ResFeat50 and 85.67% using VggFeat16. The average recall, precision and F1-score are 95.50%, 95.50%, 95.50% and 85.75%, 86.25%, 85.75% for both ResFeat50 and VggFeat16 respectively. Conclusion The proposed pipeline achieved a state-of-the-art prediction accuracy and interestingly indicates that decision can be made in less than a minute whether the injury requires surgical intervention such as skin grafting or not.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.