Wireless sensor networks (WSN) keep developing in recent days concerning the self-covered network, self-healing network, and association of system component circuit selections that enable the implementation process. Wireless sensor network lifetime stabilization is essential to providing a higher quality experience to consumers. The wireless sensor network is associated with classifiers that keep learning the data pattern and further modify the cluster selection to produce dynamic results. The presented system is focused on creating an efficient wireless sensor network in which cluster head selection is dynamically programmed to improve the life span of the devices. The energy utilized by each node is pre-programmed with random assignments. The values are configured by the machine learning techniques to improve the hop death. The models developed using the parameters help project energy consumption. The proposed system considers a support vector machine (SVM), and the Gaussian regression process (GRP) enabled the comparative study of lifespan analysis and support systems to make cluster selection efficient. The proposed model is used to test the current selection of cluster heads using a support rectangle machine and further modify the regression process using the Gaussian regression model. Evaluation of network lifetime and flexibility obtained in cluster selection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.