Superconducting technology applications in electric machines have long been pursued due to their significant advantages of higher efficiency and power density over conventional technology. However, in spite of many successful technology demonstrations, commercial adoption has been slow, presumably because the threshold for value versus cost and technology risk has not yet been crossed. One likely path for disruptive superconducting technology in commercial products could be in applications where its advantages become key enablers for systems which are not practical with conventional technology. To help systems engineers assess the viability of such future solutions, we present a technology roadmap for superconducting machines. The timeline considered was ten years to attain a Technology Readiness Level of 6+, with systems demonstrated in a relevant environment. Future projections, by definition, are based on the judgment of specialists, and can be subjective. Attempts have been made to obtain input from a broad set of organizations for an inclusive opinion. This document was generated
To achieve benefits similar to those seen in hybrid-/all-electric ground-based and marine vehicles, electric propulsion has been proposed for large commercial aircraft. Among the main drivers of this are improved fuel economy, reduced harmful emissions, and lower audible noise. In converting to electric propulsion, the added electrical components' masses must be minimised so that the benefits that the components enable-improved turbine efficiency, distributed propulsion and propulsionairframe integration-are not cancelled out by their weight penalty. This puts stringent requirements on the large electric machines used in the system, both those that generate electric power from the turbine shaft and those that drive propellers or ducted fans, because they are among the heaviest of the added electric components. A key machine design metric in this application is the specific power (SP), or the power-to-mass ratio. This study gives a comprehensive overview of large electric machines for aircraft electric propulsion applications, with a focus on methods for mass reduction and SP improvement.
High number of magnetic poles in an electric machine allows reduction in radial thickness of stator and rotor yoke and thus heavy alloy. If frequency is allowed to increase with pole-count (constant speed), power level can be maintained. Thus, high frequency, together with high pole count, can improve power density of rotating electric machines. The proposed high frequency concept is applied to designing a 1 MW motor, with power density and efficiency goals of > 13kW/kg and > 96%, respectively .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.