Expansion microscopy (ExM) enables imaging of preserved specimens with nanoscale precision on diffraction limited instead of specialized super-resolution microscopes. ExM works by physically separating fluorescent probes after anchoring them to a swellable gel. The first expansion microscopy method was unable to retain native proteins in the gel and used custom made reagents not widely available. Here, we describe protein retention ExM (proExM), a variant of ExM that anchors proteins to the swellable gel allowing the use of conventional fluorescently labeled antibodies and streptavidin, and fluorescent proteins. We validate and demonstrate utility of proExM for multi-color super-resolution (~70 nm) imaging of cells and mammalian tissues on conventional microscopes.
The ability of non-invasive monitoring of deep-tissue developmental, metabolic, and pathogenic processes will advance modern biotechnology. Imaging of live mammals using fluorescent probes is more feasible within a “near-infrared optical window” (NIRW)1. Here we report a phytochrome-based near infra-red fluorescent protein (iRFP) with the excitation/emission maxima at 690/713 nm. Bright fluorescence in a living mouse proved iRFP to be a superior probe for non-invasive imaging of internal mammalian tissues. Its high intracellular stability, low cytotoxicity, and lack of the requirement to add external biliverdin-chromophore makes iRFP as easy to use as conventional GFP-like proteins. Compared to earlier phytochrome-derived fluorescent probes, the iRFP protein has better in vitro characteristics and performs well in cells and in vivo, having greater effective brightness and photostability. Compared to the far-red GFP-like proteins, iRFP has substantially higher signal to background ratio in a mouse model owing to its infra-red shifted spectra.
We here present a new way to engineer complex proteins toward multidimensional specifications, through a simple yet scalable directed evolution strategy. By robotically picking mammalian cells that are identified, under a microscope, to express proteins that simultaneously exhibit several specific properties, we can screen through hundreds of thousands of proteins in a library in a matter of a few hours, evaluating each along multiple performance axes. We demonstrate the power of this approach by identifying a novel genetically encoded fluorescent voltage indicator, simultaneously optimizing brightness and membrane localization of the protein using our microscopy-guided cell picking strategy. We produced the high-performance opsin-based fluorescent voltage reporter Archon1, and demonstrated its utility by imaging spiking and millivolt-scale subthreshold and synaptic activity in acute mouse brain slices as well as in larval zebrafish in vivo. We also demonstrate measurement of postsynaptic responses downstream of optogenetically controlled neurons in C. elegans.
Optogenetic control of individual neurons with high temporal precision, within intact mammalian brain circuitry, would enable powerful explorations of how neural circuits operate. Two-photon computer generated holography enables precise sculpting of light, and could in principle enable simultaneous illumination of many neurons in a network, with the requisite temporal precision to simulate accurate neural codes. We designed a high efficacy soma-targeted opsin, finding that fusing the N-terminal 150 residues of kainate receptor subunit 2 (KA2) to the recently discovered high-photocurrent channelrhodopsin CoChR restricted expression of this opsin primarily to the cell body of mammalian cortical neurons. In combination with two-photon holographic stimulation, we found that this somatic CoChR (soCoChR) enabled photostimulation of individual cells in intact cortical circuits with single cell resolution and <1 millisecond temporal precision, and use soCoChR to perform connectivity mapping on intact cortical circuits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.