We describe the architecture and prototype implementation of an assistive system based on Google Glass devices for users in cognitive decline. It combines the first-person image capture and sensing capabilities of Glass with cloud processing to perform real-time scene interpretation. The system architecture is multi-tiered. It offers tight end-to-end latency bounds on compute-intensive operations, while addressing concerns such as limited battery capacity and limited processing capability of wearable devices. The system gracefully degrades services in the face of network failures and unavailability of distant architectural tiers.
Report Documentation PageForm Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
We studied the effect of light-induced gliding of the easy axis of dye-doped nematic liquid crystal on an aligning polymer surface. The observed drift of the easy axis is over tens of degrees and is caused by light-induced anisotropic adsorption and/or desorption of dye molecules on or from the aligning layer in the presence of light-induced bulk torque. We present a theoretical model that explains the experimental data in terms of the light-induced changes of the adsorbed dye molecules angular distribution due to their exchange with the dye molecules from the liquid crystal bulk.
In this study, the effect of the molecular weight of the polymer matrix on the dispersion of multi-walled carbon nanotubes (MWNTs) was investigated for high-density polyethylene (HDPE)/MWNT and polycarbonate (PC)/MWNT composite materials. The dispersion of MWNTs in the polymer matrix showed a strong correlation with the melt viscosity of the polymer matrix, i.e., with the molecular weight of the polymer material. Several experimental methods, such as 4-point probe, SEM and ARES, were used to examine the effect of the molecular weight of the polymer matrix on the dispersion of the MWNTs and various physical properties of the composites. The use of a high melt viscosity polymer as the matrix material restricted the mobility of the MWNTs, and also hindered the dispersion of MWNTs due to the high entanglement density of the polymer matrix.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.