Two-dimensional (2D) arrays of π-conjugated aromatic polymers produced by surface-selective Schiff base coupling reactions between an aromatic diamine and an aromatic dialdehyde were investigated in detail using in situ scanning tunneling microscopy. Surface-selective coupling was achieved for almost all diamine/dialdehyde combinations attempted, although several combinations did not proceed even in homogeneous aqueous alkaline solution. Most of the combinations of an aromatic diamine and a dialdehyde, except the combinations of 4,4'-azodianiline with mono/bithiophenedicarboxaldehyde, formed highly ordered π-conjugated polymer arrays on an iodine-modified Au(111) surface in aqueous solution at a suitable pH. The simplest polymer of the various combinations tested, obtained from the combination of 1,4-diaminobenzene with terephthaldicarboxaldehyde, gave a 2D array consisting of linearly connected benzene units. Poly(azomethine) adlayers caused a positive shift in the electrochemical potential of the butterfly shaped oxidative adsorption and reductive desorption of iodine. The acceleration of the reductive desorption of iodine suggests the existence of a weak interaction between the polymer layer and iodine. Not only the first polymer adlayers but also partially adsorbed secondary adlayers with "on-top" epitaxial behavior were frequently observed for all polymer systems. The alignment of the polymer chains in the adlayers possessed a certain regularity in terms of a regular interval between polymer chains because of repulsive interpolymer interactions.
Two-dimensional pi-conjugated metal-porphyrin covalent organic frameworks were produced in aqueous solution on an iodine-modified Au(111) surface by "on-site" azomethine coupling of Fe(III)-5,10,15,20-tetrakis(4-aminophenyl)porphyrin (FeTAPP) with terephthal dicarboxaldehyde and investigated in detail using in-situ scanning tunneling microscopy. Mixed covalent organic porphyrin frameworks consisting of FeTAPP and metal-free TAPP (H2TAPP) were prepared through simultaneous adsorption in a mixed solution as well as partial replacement of FeTAPP by H2TAPP in an as-prepared metal-porphyrin framework. In the mixed framework, the relative distribution of FeTAPP to H2TAPP was not random and revealed a preference for homo-connection rather than heteroconnection. The construction of substrate-supported, pi-conjugated covalent frameworks from multiple building blocks, including metal centers, will be of significant utility in the design of functional molecular nanoarchitectures.
We used in situ scanning tunneling microscopy to investigate the formation of two-dimensional supramolecules by means of reversible azomethine condensation reactions between aqueous 5,10,15,20-tetrakis(4-aminophenyl)porphyrin (TAPP) and terephthaldicarboxaldehyde (TPA) or benzaldehyde (BA) at the solid/liquid interface of an iodine-modified Au(111) surface. A nanomesh and a close-packed array were formed by the reaction of TAPP with the dicarboxaldehyde. Formation of these structures was driven by Schiff base (azomethine) bonding and simultaneous self-assembly controlled by adsorption
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.