A method for predicting pedestrian movement on the basis of a mixed Markov-chain model (MMM) is proposed. MMM takes into account a pedestrian's personality as an unobservable parameter. It also takes into account the eects of the pedestrian's previous status. A promotional experiment in a major shopping mall demonstrated that the highest prediction accuracy of the MMM method is 74.4%. In comparison with methods based on a Markov-chain model (MM) and a hidden-Markov model (HMM) (i.e., prediction rates of about 45% and 2%, respectively), the proposed MMM-based prediction method is substantially more accurate. This pedestrian-movement prediction based on MMM using tracking data will make it possible to provide so-called "adaptive mobile services" with proactive functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.