Amide fragments are found to be one of the key constituents in a wide range of natural products and pharmacologically active compounds. Herein, we report a simple and efficient protocol...
Ruthenium catalyzed C−H activation is well known for its high tolerance towards the functional group and broad applicability in organic synthesis and molecular sciences, with significant applications in pharmaceutical industries, material sciences, and polymer industry. In the last few decades, enormous progress has been observed with ruthenium‐catalyzed C−H activation chemistry. Notably, the vast majority of the C−H functionalization known in the literature are intermolecular, although the intramolecular variant provides fascinating new structural facet starting from the simple molecular scaffolds. Intramolecular C−H functionalization is atom economical and step efficient, results in less formation of undesired products which is easy to purify. This has created a lot of interest in organic chemistry in developing new synthetic strategies for such functionalization. The focus of this review is to present the relatively unexplored intramolecular functionalization of C−H bonds into C−X (X=C, N, O, S) bonds utilizing versatile ruthenium catalysts, their scope, and brief mechanistic discussion.
Amide bonds are ubiquitous and regarded as an essential constituent of many biologically active drug molecules and fine chemicals. We report a practical and operationally simple ruthenium-based catalytic system for...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.