Increasing interest, enthusiasm of sport lovers, and economics involved offer high importance to sports video recording and analysis. Being crucial for decision making, ball detection and tracking in soccer has become a challenging research area. This paper presents a novel deep learning approach for 2D ball detection and tracking (DLBT) in soccer videos posing various challenges. A new 2-stage buffer median filtering background modelling is used for moving objects blob detection. A deep learning approach for classification of an image patch into three classes, i.e. ball, player, and background is initially proposed. Probabilistic bounding box overlapping technique is proposed further for robust ball track validation. Novel full and boundary grid concepts resume tracking in ball track lost and ball out of frame situations. DLBT does not require human intervention to identify ball from the initial frames unlike the most published algorithms. DLBT yields extraordinary accurate and robust tracking results compared to the other contemporary 2D trackers even in presence of various challenges including very small ball size and fast movements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.