Background
Mango anthracnose, caused by Colletotrichum gloeosporioides, is one of the most important diseases of mango crop. It mainly attacks leaves, flowers, young fruits and twigs and also appears as a post-harvest disease of ripened fruits. Application of bio-control agents has huge potential in plant disease management. The goal of the present research was to establish the potential of individual and combined bio-control agents for the management of mango anthracnose under in vitro and under field conditions.
Results
The antagonistic reaction of six fungi, six bacteria and nine yeasts against C. gloeosporioides on potato dextrose agar medium and malt extract agar medium was observed among which Trichoderma harzianum was found to be the most efficient with 89.26% mycelial growth inhibition. Evaluation of bio-control agents against anthracnose disease development on mango fruit revealed that dip treatment of mango fruits in spore suspension (1.2 × 104 cfu/ml) of T. harzianum for 5 min was the most effective and provided disease control to the tune of 81.67%. Combined application of effective bio-control agents as a post-harvest fruit dip treatment was also evaluated against the mango anthracnose on mango fruits, where the treatment of T. harzianum + Pichia anomala was very effective with 93.39% disease control. Under field conditions, three consecutive sprays of T. harzianum, starting with the initiation of disease on leaves, followed by other two sprays at an interval of 15 days during 2015 and 2016 were found the best for the management of mango anthracnose disease both on leaves and on fruits at two locations.
Conclusions
The combined and individual applications of bio-control agents, viz.T. harzianum, Bacillus subtilis and P. anomala, through foliar spray or by fruit dip had the potential to control mango anthracnose. The bio-formulations of these bio-control agents had the potential to replace chemical fungicides and also protect the natural environment, thus playing a significant role in integrated disease management.
Post-harvest fungal pathogens are reported to cause 10 to 25 percent losses in apple. Among various pathogens, white rot caused by Botryosphaeria dothidea is one of the important post-harvest diseases. Incidence of white rot was recorded between3.0-14.1 percent in important marketing yards of Himachal Pradesh. Golden Delicious variety of apple has been found to be most susceptible to white rot pathogen. Two botanical formulations by mixing equal quantity of leaves of Karu (Roylea elegans), Artemisia (Artemisia roxburghiana), Neem (Azadirachta indica), Bana (Vitex negundo), Tulsi (Ocimum sanctum) and seeds of Darek (Melia azedarach) made in water and cowurine were evaluated against the white rot pathogen. Fruit dip for 30 minutes in cow urine based formulation did not allowed the disease development to form lesions in artificially inoculated apple fruits. Also, fruits dipped in cow urine based formulation followed by their storage in card board boxes at room temperature (25± 3 0 C) for 30 days storage had minimum incidence (2.8%) of white rot disease. Therefore, dip treatment of apple fruits with different bio -resources including water and cow urine based botanical formulation separately proved effective in the management of white rot (Botryosphaeria dothidea) of apple.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.