Mealybug wilt of pineapple (MWP) is a disease of pineapple that has a long history in Hawaii, but is present throughout the world where pineapples are grown in tropical regions. The disease has an interesting etiology that is poorly understood but involves an association with virus particles, mealybug vectors, and ants which spread the mealybug vectors. Several distinct pineapple mealybug wilt-associated virus (PMWaV) species have been identified thus far with potential further member species yet to be characterized. Pineapple mealybug wilt-associated viruses are member species of the Ampelovirus genus of the Closteroviridae family. Ampeloviruses are split into two subgroups, subgroup I and subgroup II. PMWaV-2 is a subgroup II member, and these have a longer and more complex genome with additional genes on the 3' terminus of the RNA genome compared to subgroup I ampeloviruses. PMWaV-2, along with the presence of mealybug vectors, have been shown to be necessary factors in symptom development in Hawaii. Some of these extra genes in the 3' of PMWaV-2 have recently been shown to function as silencing suppressors, and may play a role in the virulence of PMWaV-2 and symptom development. In other regions of the world, reports of symptomatic plants without PMWaV-2 infection, but with PMWaV-1, -3 or some combination, contradict the requirement of PMWaV-2 for symptom development in MWP. It is possible that further, uncharacterized PMWaVs may be present in symptomatic pineapple plants that test negative for PMWaV-2, explaining the inconsistency in symptom development. More research is necessary to explore the confusing etiology of the MWP disease, and to perhaps shed light upon the symptom development.
Higher plants use RNA silencing to defend against viral infections. As a counter defense, plant viruses have evolved proteins that suppress RNA silencing. Mealybug wilt of pineapple (MWP), an important disease of pineapple, has been associated with at least three distinct viruses, Pineapple mealybug wilt associated virus -1, -2, and -3 (PMWaV-1, -2, and -3). Selected open reading frames (ORFs) of PMWaV-1 and PMWaV-2 were screened for their local and systemic suppressor activities in Agrobacterium-mediated transient assays using green fluorescent protein (GFP) in Nicotiana benthamiana. Results indicate that PMWaV-2 utilizes a multiple-component RNA silencing suppression mechanism. Two proteins, p20 and CP, target both local and systemic silencing in N. benthamiana, while the p22 and CPd proteins target only systemic silencing. In the related virus PMWaV-1, we found that only one of the encoded proteins, p61, had only systemic suppressor activity. Of all the proteins tested from both viruses, only the PMWaV-2 p20 protein suppressed local silencing induced by double-stranded RNA (dsRNA), but only when low levels of inducing dsRNA were used. None of the proteins analyzed could interfere with the short distance spread of silencing. We examined the mechanism of systemic suppression activity by investigating the effect of PMWaV-2-encoded p20 and CP proteins on secondary siRNAs. Our results suggest that the PMWaV-2 p20 and CP proteins block the systemic silencing signal by repressing production of secondary siRNAs. We also demonstrate that the PMWaV-2 p20 and p22 proteins enhanced the pathogenicity of Potato virus X in N. benthamiana.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.