The objective of the current research article is to provide a comprehensive review of excipients impact on the stability of the drug product and their implications during the product development. Recent developments in the understanding of the degradation pathways further impact methodologies used in the pharmaceutical industry for potential stability assessment. The formation of drug excipient adducts was very common based on the sensitive chemical moieties in the drugs and the excipients. The formation of the impurities was not limited to drug related impurities but there were several possibilities of the drug-excipient adduct formations as well as excipient impurities reaction with Active Pharmaceutical Ingredients. Identification of drug degradation in presence of excipients/excipient impurities requires extensive knowledge and adequate analytical characterization data. Systematic literature review and understanding about the drug formulation process, give you a smooth platform in establishing the finished product in the drug market. This paper discusses mechanistic basis of known drug-excipient interactions with case studies and provides an overview of common underlying themes in solid, semisolid and parenteral dosage forms.
The Objective of the review article is to give a detailed description of the forced degradation studies as per the regulatory guidelines that are associated with various regulatory agencies. This article summarizes the collective views of industry practices on the topic of forced degradation studies. The article includes an overview of existing guidance’s and literature for best practices
The advantages of the described technique included a single method with a shorter run time (2.5 min), simple extraction technique, LLOQ of 1 ng/ml for CAN and 2 ng/ml for HCTZ and lower sample volume (0.10 ml), which overcomes drawbacks of two single methods for each analyte, such as higher analysis time, LOQ and sample volume, as in previously published methods. The developed assay was applied to an oral pharmacokinetic study in humans.
A highly selective, sensitive and accurate HPLC method has been developed and validated for the estimation of four proton-pump inhibitors (PPI), lansoprazole (LPZ), omeprazole (OPZ), pantoprazole (PPZ) and rabeprazole (RPZ), with 500 microL human plasma using zonisamide as an internal standard (IS). The sample preparation involved simple liquid-liquid extraction of LPZ, OPZ, PPZ and RPZ and IS from human plasma with ethyl acetate. The baseline separation of all the peaks was achieved with 0.1% triethylamine (pH 6.0):acetonitrile (72:28, v/v) at a flow rate of 1 mL/min on a Zorbax C(8) column. The total chromatographic run time was 11.0 min and the simultaneous elution of IS, OPZ, RPZ, PPZ and LPZ occurred at approximately 2.42, 4.45, 5.02 and 9.37 min, respectively. The method was proved to be accurate and precise at linearity range of 20.61-1999.79 ng/mL with a correlation coefficient (r) of >or=0.999. The limit of quantitation for each of the PPI studied was 20.61 ng/mL. The intra- and inter-day precision and accuracy values were found to be within the assay variability limits as per the FDA guidelines. The developed assay method was applied to a pharmacokinetic study in human volunteers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.