As we know that the normalization is a pre-processing stage of any type problem statement. Especially normalization takes important role in the field of soft computing, cloud computing etc. for manipulation of data like scale down or scale up the range of data before it becomes used for further stage. There are so many normalization techniques are there namely Min-Max normalization, Z-score normalization and Decimal scaling normalization. So by referring these normalization techniques we are going to propose one new normalization technique namely, Integer Scaling Normalization. And we are going to show our proposed normalization technique using various data sets.
Exchange rates are highly fluctuating by nature, thus difficult to forecast. Artificial neural networks (ANN) have proved to be better than statistical methods. Inadequate training data may lead the model to reach suboptimal solution resulting, poor accuracy as ANN-based forecasts are data driven. To enhance forecasting accuracy, we suggests a method of enriching training dataset through exploring and incorporating of virtual data points (VDPs) by an evolutionary method called as fireworks algorithm trained functional link artificial neural network (FWA-FLN). The model maintains the correlation between the current and past data, especially at the oscillation point on the time series. The exploring of a VDP and forecast of the succeeding term go consecutively by the FWA-FLN. Real exchange rate time series are used to train and validate the proposed model. The efficiency of the proposed technique is related to other models trained similarly and produces far better prediction accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.