A B S T R A C T COVID-19 infection has created a panic across the globe in recent times. Early detection of COVID-19 infection can save many lives in the prevailing situation. This virus affects the respiratory system of a person and creates white patchy shadows in the lungs. Deep learning is one of the most effective Artificial Intelligence techniques to analyse chest X-ray images for efficient and reliable COVID-19 screening. In this paper, we have proposed a Deep Convolutional Neural Network method for fast and dependable identification of COVID-19 infection cases from the patient chest X-ray images. To validate the performance of the proposed system, chest X-ray images of more than 150 confirmed COVID-19 patients from the Kaggle data repository are used in the experimentation. The results show that the proposed system identifies the cases with an accuracy of 93%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.