The evolution of the art ecosystem is driven by largely invisible networks, defined by undocumented interactions between artists, institutions, collectors and curators. The emergence of cryptoart, and the NFT-based digital marketplace around it, offers unprecedented opportunities to examine the mechanisms that shape the evolution of networks that define artistic practice. Here we mapped the Foundation platform, identifying over 48,000 artworks through the associated NFTs listed by over 15,000 artists, allowing us to characterize the patterns that govern the networks that shape artistic success. We find that NFT adoption by both artists and collectors has undergone major changes, starting with a rapid growth that peaked in March 2021 and the emergence of a new equilibrium in June. Despite significant changes in activity, the average price of the sold art remained largely unchanged, with the price of an artist’s work fluctuating in a range that determines his or her reputation. The artist invitation network offers evidence of rich and poor artist clusters, driven by homophily, indicating that the newly invited artists develop similar engagement and sales patterns as the artist who invited them. We find that successful artists receive disproportional, repeated investment from a small group of collectors, underscoring the importance of artist–collector ties in the digital marketplace. These reproducible patterns allow us to characterize the features, mechanisms, and the networks enabling the success of individual artists, a quantification necessary to better understand the emerging NFT ecosystem.
The COVID-19 pandemic has sparked unprecedented mobilization of scientists, generating a deluge of papers that makes it hard for researchers to keep track and explore new directions. Search engines are designed for targeted queries, not for discovery of connections across a corpus. In this paper, we present SciSight, a system for exploratory search of COVID-19 research integrating two key capabilities: first, exploring associations between biomedical facets automatically extracted from papers (e.g., genes, drugs, diseases, patient outcomes); second, combining textual and network information to search and visualize groups of researchers and their ties. SciSight 1 has so far served over 15K users with over 42K page views and 13% returns.
The COVID-19 pandemic has sparked unprecedented mobilization of scientists, already generating thousands of new papers that join a litany of previous biomedical work in related areas. This deluge of information makes it hard for researchers to keep track of their own field, let alone explore new directions. Standard search engines are designed primarily for targeted search and are not geared for discovery or making connections that are not obvious from reading individual papers.In this paper, we present our ongoing work on SciSight, a novel framework for exploratory search of COVID-19 research. Based on formative interviews with scientists and a review of existing tools, we build and integrate two key capabilities: first, exploring interactions between biomedical facets (e.g., proteins, genes, drugs, diseases, patient characteristics); and second, discovering groups of researchers and how they are connected. We extract entities using a language model pre-trained on several biomedical information extraction tasks, and enrich them with data from the Microsoft Academic Graph (MAG). To find research groups automatically, we use hierarchical clustering with overlap to allow authors, as they do, to belong to multiple groups. Finally, we introduce a novel presentation of these groups based on both topical and social affinities, allowing users to drill down from groups to papers to associations between entities, and update query suggestions on the fly with the goal of facilitating exploratory navigation.SciSight 1 has thus far served over 10K users with over 30K page views and 13% returning users. Preliminary user interviews with biomedical researchers suggest that SciSight complements current approaches and helps find new and relevant knowledge. * Denotes equal contribution 1
The COVID-19 pandemic has sparked unprecedented mobilization of scientists, already generating thousands of new papers that join a litany of previous biomedical work in related areas. This deluge of information makes it hard for researchers to keep track of their own field, let alone explore new directions. Standard search engines are designed primarily for targeted search and are not geared for discovery or making connections that are not obvious from reading individual papers.In this paper, we present our ongoing work on SciSight, a novel framework for exploratory search of COVID-19 research. Based on formative interviews with scientists and a review of existing tools, we build and integrate two key capabilities: first, exploring interactions between biomedical facets (e.g., proteins, genes, drugs, diseases, patient characteristics); and second, discovering groups of researchers and how they are connected. We extract entities using a language model pre-trained on several biomedical information extraction tasks, and enrich them with data from the Microsoft Academic Graph (MAG). To find research groups automatically, we use hierarchical clustering with overlap to allow authors, as they do, to belong to multiple groups. Finally, we introduce a novel presentation of these groups based on both topical and social affinities, allowing users to drill down from groups to papers to associations between entities, and update query suggestions on the fly with the goal of facilitating exploratory navigation.SciSight 1 has thus far served over 10K users with over 30K page views and 13% returning users. Preliminary user interviews with biomedical researchers suggest that SciSight complements current approaches and helps find new and relevant knowledge.
Every year the National Institutes of Health allocates $10.7 billion (one-third of its funds) for clinical science research while the pharmaceutical companies spend $52.9 billion (90% of its annual budget). However, we know little about funder collaborations and the impact of collaboratively funded projects. As an initial effort towards this, we examine the co-funding network, where a funder represents a node and an edge signifies collaboration. Our core data include all papers that cite and receive citations by the Cochrane Database of Systemic Reviews, a prominent clinical review journal. We find that 65% of clinical papers have multiple funders and discover communities of funders that are formed by national boundaries and funding objectives. To quantify success in funding, we use a g -index metric that indicates efficiency of funders in supporting clinically relevant research. After controlling for authorship, we find that funders generally achieve higher success when collaborating than when solo-funding. We also find that as a funder, seeking multiple, direct connections with various disconnected funders may be more beneficial than being part of a densely interconnected network of co-funders. The results of this paper indicate that collaborations can potentially accelerate innovation, not only among authors but also funders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.