Solution combustion synthesis of different oxides involves a self-sustained reaction between an oxidizer (e.g., metal nitrate) and a fuel (e.g., glycine, hydrazine). The mechanism of synthesis for three major iron oxide phases, i.e., R-and γ-Fe 2 O 3 and Fe 3 O 4 , using the combustion approach and a combination of simple precursors such as iron nitrate and oxalate, as well as different fuels, is investigated. Based on the obtained fundamental knowledge, for the first time in the literature, the above powders with well-crystalline structures and surface areas in the range 50-175 m 2 /g are produced using a single approach while simultaneously avoiding additional calcination procedures. It is also shown that utilizing complex fuels and complex oxidizers is an attractive methodology to control the product composition and properties.
As semiconductor heterostructures play critical roles in today's electronics and optoelectronics, the introduction of active heterojunctions can impart new and improved capabilities that will enable the use of solution-processable colloidal quantum dots in future devices. Such heterojunctions incorporated into colloidal nanorods may be especially promising, since the inherent shape anisotropy can provide additional benefits of directionality and accessibility in band structure engineering and assembly. Here we develop doubleheterojunction nanorods where two distinct semiconductor materials with type II staggered band offset are both in contact with one smaller band gap material. The double heterojunction can provide independent control over the electron and hole injection/ extraction processes while maintaining high photoluminescence yields. Light-emitting diodes utilizing double-heterojunction nanorods as the electroluminescent layer are demonstrated with low threshold voltage, narrow bandwidth and high efficiencies.
Here, we report multilayer stacking of films of quantum dots (QDs) for the purpose of tailoring the energy band alignment between charge transport layers and light emitting layers of different color in quantum dot light-emitting diodes (QD LED) for maximum efficiency in full color operation. The performance of QD LEDs formed by transfer printing compares favorably to that of conventional devices fabricated by spin-casting. Results indicate that zinc oxide (ZnO) and titanium dioxide (TiO2) can serve effectively as electron transport layers (ETLs) for red and green/blue QD LEDs, respectively. Optimized selections for each QD layer can be assembled at high yields by transfer printing with sacrificial fluoropolymer thin films to provide low energy surfaces for release, thereby allowing shared common layers for hole injection (HIL) and hole transport (HTL), along with customized ETLs. This strategy allows cointegration of devices with heterogeneous energy band diagrams, in a parallelized scheme that offers potential for high throughput and practical use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.