Leigh syndrome (LS), also known as infantile subacute necrotizing encephalopathy, is the most frequent mitochondrial disorder in children. Recently, more than 80 genes have been associated with LS, which greatly complicates the diagnosis. In this article, we present clinical and molecular findings of 219 patients with LS and give the detailed description of three cases with rare findings in nuclear genes MORC2, NARS2 and VPS13D, demonstrating wide genetic heterogeneity of this mitochondrial disease. The most common cause of LS in Russian patients are pathogenic variants in the SURF1 gene (44.3% of patients). The most frequent pathogenic variant is c.845_846delCT (66.0% of mutant alleles; 128/192), which is also widespread in Eastern Europe. Five main LS genes, SURF1, SCO2, MT-ATP6, MT-ND5 and PDHA1, account for 70% of all LS cases in the Russian Federation. Using next generation sequencing (NGS) technique, we were able to detect pathogenic variants in other nuclear genes: NDUFV1, NDUFS2, NDUFS8, NDUFAF5, NDUFAF6, NDUFA10, SUCLG1, GFM2, COX10, PMPCB, NARS2, PDHB and SLC19A3, including two genes previously associated with Leigh-like phenotypes—MORC2 and VPS13D. We found 49 previously undescribed nucleotide variants, including two deep intronic variants which affect splicing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.