Many current Evolutionary Algorithms (EAs) suffer from a tendency to converge prematurely or stagnate without progress for complex problems. This may be due to the loss of or failure to discover certain valuable genetic material or the loss of the capability to discover new genetic material before convergence has limited the algorithm's ability to search widely. In this paper, the Hierarchical Fair Competition (HFC) model, including several variants, is proposed as a generic framework for sustainable evolutionary search by transforming the convergent nature of the current EA framework into a non-convergent search process. That is, the structure of HFC does not allow the convergence of the population to the vicinity of any set of optimal or locally optimal solutions. The sustainable search capability of HFC is achieved by ensuring a continuous supply and the incorporation of genetic material in a hierarchical manner, and by culturing and maintaining, but continually renewing, populations of individuals of intermediate fitness levels. HFC employs an assembly-line structure in which subpopulations are hierarchically organized into different fitness levels, reducing the selection pressure within each subpopulation while maintaining the global selection pressure to help ensure the exploitation of the good genetic material found. Three EAs based on the HFC principle are tested - two on the even-10-parity genetic programming benchmark problem and a real-world analog circuit synthesis problem, and another on the HIFF genetic algorithm (GA) benchmark problem. The significant gain in robustness, scalability and efficiency by HFC, with little additional computing effort, and its tolerance of small population sizes, demonstrates its effectiveness on these problems and shows promise of its potential for improving other existing EAs for difficult problems. A paradigm shift from that of most EAs is proposed: rather than trying to escape from local optima or delay convergence at a local optimum, HFC allows the emergence of new optima continually in a bottom-up manner, maintaining low local selection pressure at all fitness levels, while fostering exploitation of high-fitness individuals through promotion to higher levels.
Abstract. Initial results have been achieved for automatic synthesis of MEMS system-level lumped parameter models using genetic programming and bond graphs. This paper first discusses the necessity of narrowing the problem of MEMS synthesis into a certain specific application domain, e.g., RF MEM devices. Then the paper briefly introduces the flow of a structured MEMS design process and points out that system-level lumped-parameter model synthesis is the first step of the MEMS synthesis process. Bond graphs can be used to represent a system-level model of a MEM system. As an example, building blocks of RF MEM devices are selected carefully and their bond graph representations are obtained. After a proper and realizable function set to operate on that category of building blocks is defined, genetic programming can evolve both the topologies and parameters of corresponding RF MEM devices to meet predefined design specifications. Adaptive fitness definition is used to better direct the search process of genetic programming. Experimental results demonstrate the feasibility of the approach as a first step of an automated MEMS synthesis process. Some methods to extend the approach are also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.