Magnetic tunnel junctions (MTJs) have been widely utilized in sensitive sensors, magnetic memory, and logic gates due to their tunneling magnetoresistance. Moreover, these MTJ devices have promising potential for renewable energy generation and storage. Compared with Si-based devices, MTJs are more tolerant to electromagnetic radiation. In this review, we summarize the functionalities of MgO-based MTJ devices under different electromagnetic irradiation environments, with a focus on gamma-ray radiation. We explore the effects of these radiation exposures on the MgO tunnel barriers, magnetic layers, and interfaces to understand the origin of their tolerance. This review enhances our knowledge of the radiation tolerance of MgO-based MTJs, improves the design of these MgO-based MTJ devices with better tolerances, and provides information to minimize the risks of irradiation under various irradiation environments. This review starts with an introduction to MTJs and irradiation backgrounds, followed by the fundamental properties of MTJ materials, such as the MgO barrier and magnetic layers. Then, we review and discuss the MTJ materials and devices’ radiation tolerances under different irradiation environments, including high-energy cosmic radiation, gamma-ray radiation, and lower-energy electromagnetic radiation (X-ray, UV–vis, infrared, microwave, and radiofrequency electromagnetic radiation). In conclusion, we summarize the radiation effects based on the published literature, which might benefit material design and protection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.