Objectives PH46A (1) demonstrates significant anti-inflammatory activity in phenotypic models but its mechanism and site of action have been elusive. Current study focused on the bioactivity of PH46 (2) and related novel indane dimers (6-10) to investigate the impact of changes in substitution and stereochemistry at the C-1 and C-2 positions of the PH46 (2) scaffold. Methods Cytotoxicity profiles of compounds were established using THP-1 macrophages and SW480 cells. Effects of the compounds were then evaluated at 10 µM using 5-lipoxygenase (LOX) and 15-LOX enzymes, and 5-LOX binding was evaluated in silico against NDGA, nitric oxide (NO) released from LPS-induced SW480 cells and cytokines in THP-1 macrophages (IL-6, IL-1b, TNF-a and IFN-c) and in SW480 cells (IL-8). Key findings PH46 (2) and 7 cause reduction in NO, inhibition of 5-LOX with high binding energy and no cytotoxicity effects in THP-1 macrophages and SW480 cell lines (up to 50 µM). The cytokine profiling of the series demonstrated inhibition of IL-6 and TNF-a in THP-1 macrophages together with IL-8 in SW480 cells. Conclusions The observed profile of cytokine modulation (IL-6/ TNF-a, IL-8) and inhibition of release of NO and 5-LOX may contribute to the in vivo effects demonstrated by indane dimers and PH46A (1) in murine models of colitis.Anti-inflammatory PH46A and indane dimers Kit Chan et al.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.