Either pressure-transient analysis or rate-transient analysis can be interpreted by four methods: (1) conventional straight-line analysis, (2) type-curve matching procedure, (3) ACMM (automatic computer modeling matching), and (4) TDS (Tiab's direct synthesis) technique. The first three methods have serious drawbacks and are commonly misused by engineers. It does not mean they are useless since they provide good results if used properly. For example, combination of (4), (1), and (3) are strongly recommended by the authors since type-curve matching are tedious and use trial-and-error procedures. ACMM is not only the most used method, but also the most risky methodology since the non-linear regression analysis used to match the pressure test with the model output leads to multiple solutions (none uniqueness of the solution). Moreover, some engineers employ it as an inverse problem when pretending to define the model by matching the data with any model. For those who do not know the way, any transportation means is good for. This is a very wrong alternative since engineers must choose the reservoir model and the ACMM helps to find out the solution. Type-curve matching is not only risky, but tedious and it fails to provide accurate results in short tests. Conventional analysis has no way of verification and some engineers confuse the flow regimes and draw the straight line on the wrong region leading to wrong interpretations. TDS technique may be the panacea to the above-mentioned problems since it uses direct analytical solutions with information coming from characteristic points found on the pressure and pressure derivative vs. time log-log plot on which the interpreter can better define flow regimes and verify results from different sources. In this paper we demonstrate the practicability and accuracy of TDS technique with some detailed examples and results are quite well. The intention of this paper is to encourage people the use of TDS technique and provide a state-of-the-art of it. Although not mentioned, TDS technique has been used by common well test interpretation software. The power of TDS is not only based upon the accuracy and capability verification, but also the possibility of artificially created non-existing flow regimes to further estimate/verify reservoir parameters. This means the best and only accurate option for short pressure test interpretations is TDS technique. Then, an engineer is welcome to use the output results with ACMM to obtain an accurate matching.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.