Human NK cells can be classified into phenotypically and functionally distinct subsets based on levels of CD56 receptor. CD56dim cells are generally considered more cytotoxic, whereas the CD56bright cells are potent producers of IFN-γ. In this study, we define the metabolic changes that occur in peripheral blood NK cells in response to cytokine. Metabolic analysis showed that NK cells upregulate glycolysis and oxidative phosphorylation in response to either IL-2 or IL-12/15 cytokine combinations. Despite the fact that both these cytokine combinations robustly upregulated mammalian Target of Rapamycin Complex 1 in human NK cells, only the IL-2–induced metabolic changes were sensitive to mammalian Target of Rapamycin Complex 1 inhibition by rapamycin. Interestingly, we found that CD56bright cells were more metabolically active compared with CD56dim cells. They preferentially upregulated nutrient receptors and also differed substantially in terms of their glucose metabolism. CD56bright cells expressed high levels of the glucose uptake receptor, Glut1 (in the absence of any cytokine), and had higher rates of glucose uptake compared with CD56dim cells. Elevated levels of oxidative phosphorylation were required to support both cytotoxicity and IFN-γ production in all NK cells. Finally, although elevated glycolysis was not required directly for NK cell degranulation, limiting the rate of glycolysis significantly impaired IFN-γ production by the CD56bright subset of cells. Overall, we have defined CD56bright NK cells to be more metabolically active than CD56dim cells, which supports their production of large amounts of IFN-γ during an immune response.
Bacterial Lipopolysaccharide (LPS) is a strong inducer of inflammation and does so by inducing polarization of macrophages to the classic inflammatory M1 population. Given the role of Btk as a critical signal transducer downstream of TLR4, we investigated its role in M1/M2 induction. In Btk deficient (Btk −\−) mice we observed markedly reduced recruitment of M1 macrophages following intraperitoneal administration of LPS. Ex vivo analysis demonstrated an impaired ability of Btk−/− macrophages to polarize into M1 macrophages, instead showing enhanced induction of immunosuppressive M2-associated markers in response to M1 polarizing stimuli, a finding accompanied by reduced phosphorylation of STAT1 and enhanced STAT6 phosphorylation. In addition to STAT activation, M1 and M2 polarizing signals modulate the expression of inflammatory genes via differential activation of transcription factors and regulatory proteins, including NF-κB and SHIP1. In keeping with a critical role for Btk in macrophage polarization, we observed reduced levels of NF-κB p65 and Akt phosphorylation, as well as reduced induction of the M1 associated marker iNOS in Btk−/− macrophages in response to M1 polarizing stimuli. Additionally enhanced expression of SHIP1, a key negative regulator of macrophage polarisation, was observed in Btk−/− macrophages in response to M2 polarizing stimuli. Employing classic models of allergic M2 inflammation, treatment of Btk −/− mice with either Schistosoma mansoni eggs or chitin resulted in increased recruitment of M2 macrophages and induction of M2-associated genes. This demonstrates an enhanced M2 skew in the absence of Btk, thus promoting the development of allergic inflammation.
Age-related macular degeneration (AMD) is the most common form of central retinal blindness globally. Distinct processes of the innate immune system, specifically activation of the NLRP3 inflammasome, have been shown to play a central role in the development of both "dry" and neovascular ("wet") forms of the disease. We show that the inflammatory cytokine interleukin-18 (IL-18) can regulate choroidal neovascularization formation in mice. We observed that exogenous administration of mature recombinant IL-18 has no effect on retinal pigment epithelial (RPE) cell viability, but that overexpression of pro-IL-18 or pro-IL-1β alone can cause RPE cell swelling and subsequent atrophy, a process that can be inhibited by the promotion of autophagy. A direct comparison of local and systemic administration of mature recombinant IL-18 with current anti-VEGF (vascular endothelial growth factor)-based therapeutic strategies shows that IL-18 treatment works effectively alone and more effectively in combination with anti-VEGF therapy and represents a novel therapeutic strategy for the treatment of wet AMD.
Although production of cytokines by TLR is essential for viral and bacterial clearance, overproduction can be detrimental, thus controlling these responses is essential. CD33-related sialic acid binding Ig-like lectin receptors (Siglecs) have been implicated in the control of leukocyte responses. In this study, we report that murine Siglec-E is induced by TLRs in a MyD88-specific manner, is tyrosine phosphorylated following LPS stimulation, and negatively regulates TLR responses. Specifically, we demonstrate the Siglec-E expression inhibits TLR-induced NF-κB and more importantly, the induction of the antiviral cytokines IFN-β and RANTES. Siglec-E mediates its inhibitory effects on TIR domain containing adaptor inducing IFN-β (TRIF)-dependent cytokine production via recruitment of the serine/threonine phosphatase SHP2 and subsequent inhibition of TBK1 activity as evidenced by enhanced TBK1 phosphorylation in cells following knockdown of Siglec-E expression. Taken together, our results demonstrate a novel role for Siglec-E in controlling the antiviral response to TLRs and thus helping to maintain a healthy cytokine balance following infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.