Demand Response (DR) provides both operational and financial benefits to a variety of stakeholders in the power system. For example, in the deregulated market operated by the Electric Reliability Council of Texas (ERCOT), load serving entities (LSEs) usually purchase electricity from the wholesale market (either in day-ahead or real-time market) and sign fixed retail price contracts with their end-consumers. Therefore, incentivizing end-consumers’ load shift from peak to off-peak hours could benefit the LSE in terms of reducing its purchase of electricity under high prices from the real-time market. As the first-of-its-kind implementation of Coupon Incentive-based Demand Response (CIDR), the EnergyCoupon project provides end-consumers with dynamic time-of-use DR event announcements, individualized load reduction targets with EnergyCoupons as the incentive for meeting these targets, as well as periodic lotteries using these coupons as lottery tickets for winning dollar-value gifts. A number of methodologies are developed for this special type of DR program including price/baseline prediction, individualized target setting and a lottery mechanism. This paper summarizes the methodologies, design, critical findings, as well as the potential generalization of such an experiment. Comparison of the EnergyCoupon with a conventional Time-of-Use (TOU) price-based DR program is also conducted. Experimental results in the year 2017 show that by combining dynamic coupon offers with periodic lotteries, the effective cost for demand response providers in EnergyCoupon can be substantially reduced, while achieving a similar level of demand reduction as conventional DR programs.
Summary
Demand response (DR) is rapidly gaining attention as a solution to enhance the grid reliability with deep renewable energy penetration. Although studies have demonstrated the benefits of DR in mitigating price volatility, there is limited work considering the choice of locations for DR for maximal impact. We reveal that very small load reductions at a handful of targeted locations can lead to a significant decrease in price volatility and grid congestion levels based on a synthetic Texas grid model. We achieve this through exploiting the highly nonlinear nature of congestion dynamics and by strategically selecting DR locations. We demonstrate that we can similarly place energy storage to achieve an equivalent impact. Our findings suggest that targeted DR at specific locations, rather than across-the-board DR, can have substantial benefits to the grid. These findings can inform energy policy makers and grid operators how to target DR initiatives for improving grid reliability.
The electricity sector is facing the dual challenge of supporting increasing level of demand electrification while substantially reducing its carbon footprint. Among electricity demands, the energy consumption of cryptocurrency mining data centers has witnessed significant growth worldwide. If well-coordinated, these data centers could be tailor-designed to aggressively absorb the increasing uncertainties of energy supply and, in turn, provide valuable grid-level services in the electricity market. In this paper, we study the impact of integrating new cryptocurrency mining loads into Texas power grid and the potential profit of utilizing demand flexibility from cryptocurrency mining facilities in the electricity market. We investigate different demand response programs available for data centers and quantify the annual profit of cryptocurrency mining units participating in these programs. We perform our simulations using a synthetic 2000 bus ERCOT grid model, along with added cryptocurrency mining loads on top of the real-world demand profiles in Texas. Our preliminary results show that depending on the size and location of these new loads, we observe different impacts on the ERCOT electricity market, where they could increase the electricity prices and incur more fluctuations in a highly non-uniform manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.