The thermal decomposition of formic acid was reinvestigated in the gas phase using two types of shock tubes. It was confirmed that the unimolecular decomposition proceeds through a main channel of dehydration (k1) and a minor decarboxylation channel (k2). This result is in good agreement with our previous study (J. Chem. Phys. 1984, 80, 4989). Furthermore, it was confirmed that the dehydration process is in the second-order region and that the decarboxylation is in the falloff region, in the temperature range of 1300-2000 K and over the total density of (0.5-2.5) x 10(-5) mol cm(-3). The experimental ratios between the two channels, k2/k1, are compared with those of theoretical calculations by conventional transition state theory and the Rice-Ramsperger-Kassel-Marcus theory.
In an aim to create a "sharp" molecular knife, we have studied site-specific fragmentation caused by Si:2p core photoionization of bridged trihalosilyltrimethylsilyl molecules in the vapor phase. Highly site-specific bond dissociation has been found to occur around the core-ionized Si site in some of the molecules studied. The site specificity in fragmentation and the 2p binding energy difference between the two Si sites depend in similar ways on the intersite bridge and the electronegativities of the included halogen atoms. The present experimental and computational results show that for efficient "cutting" the following conditions for the two atomic sites to be separated by the knife should be satisfied. First, the sites should be located far from each other and connected by a chain of saturated bonds so that intersite electron migration can be reduced. Second, the chemical environments of the atomic sites should be as different as possible.
Dissociative excitation processes of HCOOH in the vacuum ultraviolet (VUV) region were studied by single-VUV photon with synchrotron radiation source and by two-ultraviolet (UV) photon with KrF excimer laser. In the VUV dissociation, fluorescence excitation cross sections for the OH(A) and HCOO* were separately determined in the 106–155 nm region. The branching fraction was found to be a function of the VUV excitation wavelength. The magnitude is σOH(A)/[σOH(A)+σHCOO*]=0.13 at 124.5 nm and gradually increases to 0.39 at 110 nm. In the UV multiphoton dissociation at 249 nm, OH(A) and HCOO* fragments were also identified by a fluorescence spectrum. The production of OH(A) was shown to take place in the two-UV photon absorption of HCOOH. Nascent rotational and vibrational (V/R) state distributions of OH(A 2Σ+) produced via the photodissociation at a single excitation energy of 9.96 eV (124.5×1/249 nm×2), HCOOH+nhν(n=1,2)→HCO+OH(A 2Σ+), were determined by simulation analysis of the dispersed fluorescence spectra. The internal state distributions were found to be of the relaxed type, and rotational distribution could be approximated by a Boltzmann distribution. One-VUV photon excitation gave the best-fit rotational temperature Tr(v′=0)=3000 K and vibrational population ratio Nv′=1/Nv′=0=0.14, while two-UV photon excitation showed Tr(v′=0)=2000 K with Nv′=1/Nv′=0=0.12. Possible mechanisms for the OH(A) formation by both excitation sources were examined based on simple theoretical models. The degree of internal excitation is not consistent with a direct dissociation on a repulsive surface, and neither is a dissociation from a long-lived intermediate state. The formation of OH(A 2Σ+) is interpreted as dissociation of an electronically excited intermediate state, leading to the formation of OH(A)+CHO, populated competitively via an electronic predissociation process. The substantially different V/R distributions observed are dependent on the excited precursor state initially accessed, and may result from the constraint in the competing predissociation step that follows.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.