We examined whether prostaglandin (PG) H2, as an endothelium-dependent contracting factor, or the disturbed production of endothelium-derived relaxing factor, impairs endothelium-dependent relaxation and whether long-term inhibition of nitric oxide (NO) synthesis aggravates atherosclerosis in hypercholesterolemic rabbits. Male New Zealand White rabbits were fed one of the following diets: (1) standard chow; (2) 2% cholesterol-supplemented chow; (3) standard chow with 80 micrograms/mL N omega-nitro-L-arginine methylester (L-NAME), an NO synthetase inhibitor, in their drinking water; or (4) 2% cholesterol-supplemented chow with 80 or 160 micrograms/mL L-NAME in their drinking water. The rabbits were fed these diets for 8 or 12 weeks. Then aortic rings were obtained, and changes in isometric tension were recorded. Intimal atherosclerotic areas of the thoracic aortas were subsequently measured by planimetry. The cholesterol-supplemented diet significantly impaired endothelium-dependent aortic relaxation to acetylcholine. Pretreatment with the thromboxane A2/PGH2 receptor antagonist ONO-3708 did not reverse this impaired response. Vessels from both normocholesterolemic and hypercholesterolemic rabbits given L-NAME showed more impaired endothelium-dependent relaxation than those from their dietary counterparts not given L-NAME. Morphometric analysis revealed marked enlargement of intimal atherosclerotic areas in aortas from L-NAME-treated hypercholesterolemic rabbits compared with those from untreated hypercholesterolemic rabbits. These findings suggest that PGH2 does not contribute to impaired endothelium-dependent relaxation and that long-term administration of L-NAME promotes atherosclerosis by inhibition of NO synthesis in the hypercholesterolemic rabbit thoracic aorta.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.