Atherosclerosis is a macrophage-related inflammatory disease that remains a leading cause of death worldwide. Magnetic iron oxide (IO) nanocrystals are clinically used as magnetic resonance imaging contrast agents and their application as a detection agent for macrophages in arterial lesions has been studied extensively. We recently fabricated heparin-modified calcium phosphate (CaP) nanoparticles loaded with a large number of IO nanocrystals via coprecipitation from a supersaturated CaP solution supplemented with heparin and ferucarbotran (IO nanocrystals coated with carboxydextran). In this study, we further increased the content of IO nanocrystals in the heparin-modified IO–CaP composite nanoparticles by increasing the ferucarbotran concentration in the supersaturated CaP solution. The increase in nanoparticle IO content caused a decrease in particle diameter without impairing its dispersibility; the nanoparticles remained dispersed in water for up to 2 h due to electrostatic repulsion between particles due to the surface modification with heparin. The nanoparticles were more effectively taken up by murine RAW264.7 macrophages compared to free ferucarbotran without showing significant cytotoxicity. A preliminary in vivo study showed that the nanoparticles injected intravenously into mice delivered more IO nanocrystals to macrophage-rich carotid arterial lesions than free ferucarbotran. Our nanoparticles have potential as a delivery agent of IO nanocrystals to macrophages in arterial lesions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.