The degree of peritoneal dissemination and chemotherapy-resistant tumors is related to the prognosis in patients with advanced-stage ovarian cancer. The epithelial-mesenchymal-transition (EMT) is a multifaceted pathological program that endows cancer cells with the ability to invade and disseminate. CD24 is frequently overexpressed in various human cancers and is correlated with a poor prognosis. We herein examined the functions of CD24 in human ovarian cancer cell lines and evaluated how it contributes to the molecular mechanism underlying the regeneration of cancer stem-like cells (CSCs) through the EMT mechanism in ovarian carcinoma. We demonstrated that CD24 was expressed in 70.1% of primary ovarian carcinoma tissues, which were obtained from 174 patients, and that the expression of CD24 was an independent predictor of survival in patients with ovarian cancer. The expression of CD24 has been found to be correlated with the FIGO stage, presence of peritoneal and lymph node metastasis. CD24 induces the EMT phenomenon, which is involved in cell invasion, the highly proliferative phenotype, colony formation and which is associated with cisplatin resistance and the properties of CSCs, via the activation of PI3K/Akt, NF-κB and ERK in Caov-3 cisplatin-resistant cell lines. CD24-positive ovarian carcinomas have been shown to have a greater potential for intra-abdominal tumor cell dissemination in in vivo models. Our findings suggest that CD24 induced the EMT phenomenon in ovarian cancer, and that CD24 amplified cell growth-related intracellular signaling via the PI3K/Akt and MAPK pathways by affecting the EMT signal pathways. We believe that CD24 is a key molecule of metastatic progression in the EMT phenomenon and a promising therapeutic target for advanced ovarian cancer.
ObjectiveAlthough surgical menopause may increase the risks of osteoporosis, few studies have investigated the influence of chemotherapy and radiation therapy. The aim of this study is to evaluate the effects of treatments for gynecological malignancies on bone mineral density (BMD).MethodsThis study enrolled 35 premenopausal women (15 ovarian cancers (OCs), 9 endometrial cancers (ECs), and 11 cervical cancers (CCs)) who underwent surgical treatment that included bilateral oophorectomy with or without adjuvant platinum-based chemotherapy in OC and EC patients, or concurrent chemo-radiation therapy (CCRT) in CC patients according to the established protocols at the Osaka Medical College Hospital between 2006 and 2008. The BMD of the lumbar spine (L1–L4) was measured by dual-energy X-ray absorptiometry, and urine cross-linked telopeptides of type I collagen (NTx) and bone alkaline phosphatase (BAP) were assessed for evaluation of bone resorption and bone formation respectively. These assessments were performed at baseline and 12 months after treatment.ResultsAlthough the serum BAP was significantly increased only in the CC group, a rapid increase in the bone resorption marker urinary NTx was observed in all groups. The BMD, 12 months after CCRT was significantly decreased in the CC group at 91.9±5.9% (P<0.05 in comparison to the baseline).ConclusionThis research suggests that anticancer therapies for premenopausal women with gynecological malignancies increase bone resorption and may reduce BMD, particularly in CC patients who have received CCRT. Therefore, gynecologic cancer survivors should be educated about these potential risks and complications.
Osteopontin (OPN) is a phosphoprotein that activates several aspects of tumor progression. Alternative splicing of the OPN primary transcript generates three splicing isoforms, OPNa, OPNb and OPNc. In this report, we investigated some cellular mechanisms by which OPN splice variants could mediate PC3 prostate cancer (PCa) cell survival and growth in response to docetaxel (DXT)-induced cell death. Cell survival before and after DXT treatment was analyzed by phase-contrast microscopy and crystal-violet staining assays. Quantitative real-time PCR and immunocytochemical staining assays were used to evaluate the putative involvement of epithelial-mesenchymal transition (EMT) and OPN isoforms on mediating PC3 cell survival. Upon DXT treatment, PC3 cells overexpressing OPNb or OPNc isoforms showed higher cell densities, compared to cells overexpressing OPNa and controls. Notably, cells overexpressing OPNb or OPNc isoforms showed a downregulated pattern of EMT epithelial cell markers, while mesenchymal markers were mostly upregulated in these experimental conditions. We concluded that OPNc or OPNb overexpression in PC3 cells can mediate resistance and cell survival features in response to DXT-induced cell death. Our data also provide evidence the EMT program could be one of the molecular mechanisms mediating survival in OPNb- or OPNc-overexpressing cells in response to DXT treatment. These data could further contribute to a better understanding of the mechanisms by which PCa cells acquire resistance to DXT treatment.
Bezafibrate prevents endothelial dysfunction induced by TCchem via TG-dependent and TG-independent mechanisms.
Although this study investigates women with gynecological diseases, the postmenopausal ovary is hormonally active, and the E2 produced by postmenopausal ovaries may therefore contribute to the maintenance of lipid metabolism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.