The release of endogenous histamine (HA) from the hypothalamus of anesthetized rats was measured by in vivo microdialysis coupled with HPLC with fluorescence detection. Freshly prepared Ringer's solution was perfused at a rate of 1 microliter/min immediately after insertion of a dialysis probe into the medial hypothalamus, and brain perfusates were collected every 30 min into microtubes containing 0.2 M perchloric acid. The basal HA output was almost constant between 30 min and 7 h after the start of perfusion, with the mean value being 7.1 pg/30 min. Thus, the extracellular HA concentration was assumed to be 7.8 nM, by a calculation from in vitro recovery through the dialysis membrane. Perfusion with a high K+ (100 mM)-containing medium increased the HA output by 170% in the presence of Ca2+. Systemic administration of either thioperamide (5 mg/kg, i.p.), a selective H3 receptor antagonist, or metoprine (10 mg/kg, i.p.), an inhibitor of HA-N-methyltransferase, caused an approximately twofold increase in the HA output 30-60 min after treatment. The combined treatment with thioperamide and metoprine produced a marked increase (650%) in the HA output. The HA output decreased by approximately 70% 4-5 h after treatment with alpha-fluoromethylhistidine (alpha-FMH; 100 mg/kg, i.p.), an inhibitor of histidine decarboxylase. Furthermore, the effect of combined treatment with thioperamide and metoprine was no longer observed in alpha-FMH-treated rats. These results suggest that both HA-N-methyltransferase and H3 autoreceptors are involved in maintaining a constant level of extracellular HA and that their blockade effectively results in a higher activity level of the endogenous histaminergic system in the CNS.
Histamine (10−7 to 10−4 M) concentration-dependently stimulated the production of IL-18 and IFN-γ and inhibited the production of IL-2 and IL-10 in human PBMCs. Histamine in the same concentration range did not induce the production of IL-12 at all. The stimulatory or inhibitory effects of histamine on cytokine production were all antagonized by H2 receptor antagonists ranitidine and famotidine in a concentration-dependent manner, but not by H1 and H3 receptor antagonists. Selective H2 receptor agonists, 4-methylhistamine and dimaprit, mimicked the effects of histamine on five kinds of cytokine production. The EC50 values of histamine, 4-methylhistamine, and dimaprit for the production of IL-18 were 1.5, 1.0, and 3.8 μM, respectively. These findings indicated that histamine caused cytokine responses through the stimulation of H2 receptors. All effects of histamine on cytokine responses were also abolished by the presence of either anti-IL-18 Ab or IL-1β-converting enzyme/caspase-1 inhibitor, indicating that the histamine action is dependent on mature IL-18 secretion and that IL-18 production is located upstream of the cytokine cascade activated by histamine. The addition of recombinant human IL-18 to the culture concentration-dependently stimulated IL-12 and IFN-γ production and inhibited the IL-2 and IL-10 production. IFN-γ production induced by IL-18 was inhibited by anti-IL-12 Ab, showing the marked contrast of the effect of histamine. Thus histamine is a very important modulator of Th1 cytokine production in PBMCs and is quite unique in triggering IL-18-initiating cytokine cascade without inducing IL-12 production.
A simple and highly sensitive method for the determination of histamine (HA) was developed using ion-pair, reversed-phase HPLC coupled with postcolumn o-phthalaldehyde derivatization fluorometry, and it was applied to the unpurified extracts of human and rat plasma, and brains of rats and mice. The HA concentrations both in the plasma and brains determined by the present method were well consistent with the values obtained by cation-exchange HPLC with postcolumn fluorescent derivatization currently in use. The present method was more advantageous than the assay using cation-exchange HPLC: (1) it was three to four times more sensitive (the detection limit was 0.5 pg of HA), and (2) it enabled the measurement of HA in samples containing (R)alpha-methylhistamine, a potent and specific H3-receptor agonist, which could not be separated from HA by cation-exchange chromatography. Using the present method coupled with intracerebral microdialysis, we found in the rat hypothalamus that (R)alpha-methylhistamine (5 mg/kg i.p.) markedly decreased the extracellular concentration of HA with a maximal effect (83% reduction) during 30-60 min after injection, suggesting that most of HA in the microdialysate fraction is neuronal in origin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.