The complete nucleotide sequence of the fourth gene of symptomatic (Wa, DS-1, P, and VA70) and asymptomatic (M37, 1076, McN13, and ST3) rotaviruses of serotype 1, 2, 3, or 4 was determined by the dideoxy chain termination method. In each strain, the fourth gene, which encodes the outer capsid protein VP3, is 2,359 base pairs in length and has 5'and 3'-noncoding regions of 9 and 25 nucleotides, respectively. The gene has a single long open reading frame of 2,325 base pairs that is capable of coding for a protein of 775 amino acids. A total of 14 N-terminal and 12 C-terminal amino acids are completely conserved or almost completely conserved, respectively, among nine human rotavirus VP3 genes that have been sequenced. In addition, there is conservation of arginine at the two trypsin cleavage sites as well as conservation of clusters of amino acids in different regions of the two VP3 cleavage products, VP8 and VP5. Three distinct forms of VP3 were identified among the nine human rotavirus strains analyzed. Three symptomatic rotaviruses (serotypes 1, 3, and 4) possess highly related VP3 genes (92.2 to 97% nucleotide identity). Two symptomatic serotype 2 rotaviruses possess VP3 genes which are even more closely related to each other (98.6% nucleotide identity) and only moderately related to the aforementioned VP3 genes of serotypes 1, 3, and 4 (87.4 to 88.2% nucleotide identity). The four asymptomatic rotaviruses, which constitute the third group, possess highly related VP3 genes (95.5 to 97.5% nucleotide identity) which are distinct from those of the virulent rotaviruses (73 to 74.8% nucleotide identity). At 91 positions in the protein sequence of VP3, an amino acid is conserved among the asymptomatic rotaviruses, while a different amino acid is conserved among the symptomatic rotaviruses. Notably, five regions are conserved among the symptomatic rotaviruses, while a different set of sequences are conserved among the asymptomatic rotaviruses. It is possible that some or all of these regions of sequence dimorphism may be responsible for the difference in virulence of these two groups of human rotaviruses. There are 13 regions in the VP3 protein sequence which exhibit the greatest variability; the majority of these variable regions are observed between amino acids 106 to 192. These regions may represent potential antigenic sites related to heterotypic rotavirus neutralization.
The group A rotaviruses are composed of at least seven serotypes. Serotype specificity is defined mainly by an outer capsid protein, VP7. In contrast, the other surface protein, VP3 (775 amino acids), appears to be associated with both serotype-specific and heterotypic immunity. To identify the cross-reactive and serotypespecific neutralization epitopes on VP3 of human rotavirus, we sequenced the VP3 gene of antigenic mutants resistant to each of seven anti-VP3 neutralizing monoclonal antibodies (N-MAbs) which exhibited heterotypic or serotype 2-specific reactivity, and we defined three distinct neutralization epitopes on VP3. The mutants sustained single amino acid substitutions at position 305, 392, 433, or 439. Amino acid position 305 was critical to epitope I, whereas amino acid position 433 was critical to epitope III. In contrast, epitope II appeared to be more dependent upon conformation and protein folding because both amino acid positions 392 and 439 appeared to be critical. These four positions clustered in a relatively limited area of VP5, the larger of the two cleavage products of VP3. At the positions where amino acid substitutions occurred, there was a correlation between amino acid sequence homology among different serotypes and the reactivity patterns of various viruses with the N-MAbs used for selection of mutants. A synthetic peptide (amino acids 296 to 313) which included the sequence of epitope I reacted with its corresponding N-MAb, suggesting that the region contains a sequential antigenic determinant. These data may prove useful in current efforts to develop vaccines against human rotavirus infection.
The neutralization epitopes of human and simian rotavirus protein VP7 were studied by producing six neutralizing monoclonal antibodies (N-MAbs) and using these N-MAbs to select antigenic mutants that resisted neutralization by the N-MAbs used for their selection. Cross-neutralization tests between the N-MAbs and the antibody-selected antigenic mutants identified one cross-reactive and five distinct serotype-specific neutralization epitopes which operationally overlapped one another and constituted a single antigenic site. In addition, the amino acid substitutions in human rotavirus VP7 that are responsible for the antigenic alterations in the mutants selected with anti-VP7 cross-reactive or serotype-specific N-MAbs were identified. All the amino acid substitutions in the antigenic mutants occurred in one of two variable regions: amino acids 87 to 101 and 208 to 221.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.