A large amount of gamma-aminobutyric acid (GABA) was found to accumulate in tomato (Solanum lycopersicum) fruits before the breaker stage. Shortly thereafter, GABA was rapidly catabolized after the breaker stage. We screened the GABA-rich tomato cultivar 'DG03-9' which did not show rapid GABA catabolism after the breaker stage. Although GABA hyperaccumulation and rapid catabolism in fruits is well known, the mechanisms are not clearly understood. In order to clarify these mechanisms, we performed comparative studies of 'Micro-Tom' and 'DG03-9' fruits for the analysis of gene expression levels, protein levels and enzymatic activity levels of GABA biosynthesis- and catabolism-related enzymes. During GABA accumulation, we found positive correlations among GABA contents and expression levels of SlGAD2 and SlGAD3. Both of these genes encode glutamate decarboxylase (GAD) which is a key enzyme of GABA biosynthesis. During GABA catabolism, we found a strong correlation between GABA contents and enzyme activity of alpha-ketoglutarate-dependent GABA transaminase (GABA-TK). The contents of glutamate and aspartate, which are synthesized from GABA and glutamate, respectively, increased with elevation of GABA-TK enzymatic activity. GABA-TK is the major GABA transaminase form in animals and appears to be a minor form in plants. In 'DG03-9' fruits, GAD enzymatic activity was prolonged until the ripening stage, and GABA-TK activity was significantly low. Taken together, our results suggest that GAD and GABA-TK play crucial roles in GABA accumulation and catabolism, respectively, in tomato fruits.
The efficiency of Agrobacterium-mediated transformation of Arabidopsis thaliana was compared with different organs, Arabidopsis ecotypes, and Agrobacterium strains. Efficiency of shoot regeneration was examined using hypocotyl, cotyledon and root explants prepared from young seedlings. Hypocotyl expiants had the highest regeneration efficiency in all of the four Arabidopsis ecotypes tested, when based on a tissue culture system of callus-inducing medium (CIM: Valvekens et al. 1988) and shoot-inducing medium (SIM: Feldmann and Marks 1986). Histochemical analysis using the ß-glucuronidase (GUS) reporter gene showed that the gusA gene expression increased as the period of preincubation on CIM was extended, suggesting that dividing cells are susceptible to Agrobacterium infection. In order to obtain transgenic shoots, hypocotyl explants preincubated for 7 or 8 days on CIM were infected with Agrobacterium containing a binary vector which carries two drug-resistant genes as selection markers, and transferred to SIM for selection of transformed shoots. Of four Arabidopsis ecotypes and of three Agrobacterium strains examined, Wassilewskija ecotype and EHA101 strain showed the highest efficiency of regeneration of transformed shoots. By combining the most efficient factors of preincubation period, Arabidopsis ecotype, tissue, and bacterial strain, we obtained a transformation efficiency of about 80-90%. Southern analysis of 124 transgenic plants showed that 44% had one copy of inserted T-DNA while the others had more than one copy.
Glutamate decarboxylase (GAD) converts L-glutamate to gamma-aminobutyric acid (GABA), which is a non-protein amino acid present in all organisms. Plant GADs carry a C-terminal extension that binds to Ca(2+)/calmodulin (CaM) to modulate enzyme activity. However, rice possesses two distinct types of GAD, OsGAD1 and OsGAD2. Although they both have a C-terminal extension, the former peptide contains an authentic CaM-binding domain (CaMBD), which is common to dicotyledonous plants, while the latter does not. Therefore, the role of the C-terminal extension in functional expression of OsGAD2 was investigated. An in vitro enzyme assay using recombinant OsGAD2 proteins revealed low activity in the presence or absence of Ca(2+)/CaM. However, a truncated version of GAD2 (OsGAD2DeltaC) had over 40-fold higher activity than wild-type GAD at physiological pH. These two DNA constructs were introduced simultaneously into rice calli via Agrobacterium to establish transgenic cell lines. Free amino acids were isolated from several lines for each construct to determine GABA content. Calli overexpressing OsGAD2 and OsGAD2DeltaC had about 6-fold and 100-fold the GABA content of wild-type calli, respectively. Regenerated OsGAD2DeltaC rice plants had aberrant phenotypes such as dwarfism, etiolated leaves, and sterility. These data suggest that the C-terminal extension of OsGAD2 plays a role as a strong autoinhibitory domain, and that truncation of this domain causes the enzyme to act constitutively, with higher activity both in vitro and in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.