In order to test a possible approach to enhance fermentative inosine production by Bacillus subtilis, seven gene-targeted mutations were introduced in the laboratory standard strain168 in a stepwise fashion. The mutations were employed in order to prevent inosine 5'-monophosphate (IMP) from being consumed for AMP and GMP synthesis, to minimize inosine degradation, and to expand the intracellular IMP pool. First, the genes for adenylosuccinate synthase (purA) and IMP dehydrogenase (guaB) were inactivated. Second, two genes for purine nucleoside phosphorylase, punA and deoD, were inactivated. Third, to enhance purine nucleotide biosynthesis, the pur operon repressor PurR and the 5'-UTR of the operon, containing the guanine riboswitch, were disrupted. Finally, the -10 sequence of the pur promoter was optimized to elevate its transcription level. The resulting mutant was capable of producing 6 g/L inosine from 30 g/L glucose in culture broth without the detectable by-production of hypoxanthine. This indicates the validity of this approach for the breeding of the next generation of B. subtilis strains for industrial nucleoside production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.