Neutrophil gelatinase-associated lipocalin (Ngal), also known as siderocalin, forms a complex with ironbinding siderophores (Ngal:siderophore:Fe). This complex converts renal progenitors into epithelial tubules.In this study, we tested the hypothesis that Ngal:siderophore:Fe protects adult kidney epithelial cells or accelerates their recovery from damage. Using a mouse model of severe renal failure, ischemia-reperfusion injury, we show that a single dose of Ngal (10 μg), introduced during the initial phase of the disease, dramatically protects the kidney and mitigates azotemia. Ngal activity depends on delivery of the protein and its siderophore to the proximal tubule. Iron must also be delivered, since blockade of the siderophore with gallium inhibits the rescue from ischemia. The Ngal:siderophore:Fe complex upregulates heme oxygenase-1, a protective enzyme, preserves proximal tubule N-cadherin, and inhibits cell death. Because mouse urine contains an Ngaldependent siderophore-like activity, endogenous Ngal might also play a protective role. Indeed, Ngal is highly accumulated in the human kidney cortical tubules and in the blood and urine after nephrotoxic and ischemic injury. We reveal what we believe to be a novel pathway of iron traffic that is activated in human and mouse renal diseases, and it provides a unique method for their treatment.
Neutrophil gelatinase-associated lipocalin (NGAL) is expressed and secreted by immune cells, hepatocytes, and renal tubular cells in various pathologic states. NGAL exerts bacteriostatic effects, which are explained by its ability to capture and deplete siderophores, small iron-binding molecules that are synthesized by certain bacteria as a means of iron acquisition. Consistently, NGAL deficiency in genetically modified mice leads to an increased growth of bacteria. However, growing evidence suggests effects of the protein beyond fighting microorganisms. NGAL acts as a growth and differentiation factor in multiple cell types, including developing and mature renal epithelia, and some of this activity is enhanced in the presence of siderophore:iron complexes. This has led to the hypothesis that eukaryotes might synthesize siderophore-like molecules that bind NGAL. Accordingly, NGAL-mediated iron shuttling between the extracellular and intracellular spaces may explain some of the biologic activities of the protein. Interest in NGAL has been sparked by the observation that NGAL is massively upregulated after renal tubular injury and may participate in limiting kidney damage. This review summarizes the current knowledge about the dual effects of NGAL as a siderophore:iron-binding protein and as a growth factor and examines the role of these effects in renal injury.
The molecular machinery governing glutamatergic-GABAergic neuronal subtype specification is unclear. Here we describe a cerebellar mutant, cerebelless, which lacks the entire cerebellar cortex in adults. The primary defect of the mutant brains was a specific inhibition of GABAergic neuron production from the cerebellar ventricular zone (VZ), resulting in secondary and complete loss of external germinal layer, pontine, and olivary nuclei during development. We identified the responsible gene, Ptf1a, whose expression was lost in the cerebellar VZ but was maintained in the pancreas in cerebelless. Lineage tracing revealed that two types of neural precursors exist in the cerebellar VZ: Ptf1a-expressing and -nonexpressing precursors, which generate GABAergic and glutamatergic neurons, respectively. Introduction of Ptf1a into glutamatergic neuron precursors in the dorsal telencephalon generated GABAergic neurons with representative morphological and migratory features. Our results suggest that Ptf1a is involved in driving neural precursors to differentiate into GABAergic neurons in the cerebellum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.