Stable square planar organocopper(III) complexes (CuNCC2, CuNCC4, and CuBN) supported by carbacorrole-based tetradentate macrocyclic ligands with NNNC coordination cores were synthesized, and their structures were elucidated by spectroscopic means including X-ray crystallographic analysis. On the basis of their distinct planar structures, X-ray absorption/photoelectron spectroscopic features, and temperature-independent diamagnetic nature, these organocopper complexes can be preferably considered as novel organocopper(III) species. The remarkable stability of the high-valent Cu(III) states of the complexes stems from the closed-shell electronic structure derived from the peculiar NNNC coordination of the corrole-modified frameworks, which contrasts with the redox-noninnocent radical nature of regular corrole copper(II) complexes with an NNNN core. The proposed structure was supported by DFT (B3LYP) calculations. Furthermore, a π-laminated dimer architecture linked through the inner carbons was obtained from the one-electron oxidation of CuNCC4. We envisage that the precise manipulation of the molecular orbital energies and redox profiles of these organometallic corrole complexes could eventually lead to the isolation of yet unexplored high-valent metal species and the development of their organometallic reactions.
A glycoprotein extract (CVS), derived from the unicellular green alga Chlorella vulgaris, strain CK22, exhibited a pronounced antitumor effect against both spontaneous and experimentally induced metastasis in mice. Inhibition of tumor metastasis was enhanced when intratumor administration of CVS was followed by s.c. injection of CVS. Anti-metastatic immunopotentiation was observed in euthymic mice, but not in athymic nude mice. The antitumor activity of CVS was reflected in antigen-specific, T-cell-mediated immunity. Both CD4 and CD8 T cells contributed to the antimetastatic effects, as shown by in vivo depletion experiments with anti-T-cell subset antibodies. Furthermore, CVS caused the recruitment of T cells to the regional lymph nodes and their proliferation in these organs. The CD4-positive population, following CVS injection at the time of tumor rechallenge, displayed a pronounced increase in the proportion of T cells that were CD18 bright, CD44 bright, CD25+, CD54+, CD69+ or CD71+ in the lymph nodes. Thus, CVS induces T cell activation in peripheral lymph nodes in tumor-bearing mice. We conclude that CVS augments antimetastatic immunity through T cell activation in lymphoid organs and enhances recruitment of these cells to the tumor sites. Presurgical treatment with CVS might prevent metastasis or tumor progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.