Extracellular superoxide dismutase (SOD3), a secretory copper-containing antioxidant enzyme, plays an important role in various oxidative stress-dependent cardiovascular diseases. Although cofactor copper is required for SOD3 activity, it remains unknown whether it can regulate SOD3 transcription. We previously demonstrated that SOD3 activity requires the copper chaperone Antioxidant-1 (Atox1) involved in copper delivery to SOD3 at the trans-Golgi network (TGN). Here we show that copper treatment in mouse fibroblasts significantly increases mRNA and protein levels of SOD3, but not SOD1, which is abolished in Atox1-deficient cells. Copper promotes Atox1 translocation to the nucleus. Promoter deletion analysis identifies copper- and Atox1-response element (RE) at the SOD3 promoter. Gel shift and ChIP assays reveal that Atox1 directly binds to the Atox1-RE in a copper-dependent manner in vitro and in vivo. Adenovirus-mediated re-expression in Atox1-/- cells with nucleus-targeted Atox1 (Atox1-NLS), but not TGN-targeted Atox1 (Atox1-TGN), increases SOD3 transcription without affecting SOD3 activity. Importantly, re-expression of both Atox1-NLS and Atox1-TGN together, but not either alone, in Atox1-/- cells increases SOD3 activity. SOD3 transcription is positively regulated by copper through transcription factor function of Atox1, while full activity of SOD3 requires both copper chaperone and transcription factor function of Atox1. Thus, Atox1 is a potential therapeutic target for oxidant stress-dependent cardiovascular disease.
Extracellular superoxide dismutase (SOD3) is a secretory copper enzyme involved in protecting angiotensin II (Ang II)-induced hypertension. We previously found that Ang II upregulates SOD3 expression and activity as a counter-regulatory mechanism; however, underlying mechanisms are unclear. Antioxidant-1 (Atox1) is shown to act as a copper-dependent transcription factor as well as copper chaperone for SOD3 in vitro, but its role in Ang II-induced hypertension in vivo is unknown. Here we show that Ang II infusion increases Atox1 expression as well as SOD3 expression and activity in aortas of wild-type mice, which are inhibited in mice lacking Atox1. Accordingly, Ang II increases vascular O2•− production, reduces endothelium-dependent vasodilation and increases vasoconstriction in mesenteric arterioles to a greater extent in Atox1−/− than in wild-type mice. This contributes to augmented hypertensive response to Ang II in Atox1−/− mice. In cultured vascular smooth muscle cells, Ang II promotes translocation of Atox1 to the nucleus, thereby increasing SOD3 transcription by binding to Atox1 responsive element in the SOD3 promoter. Furthermore, Ang II increases Atox1 binding to the copper exporter ATP7A which obtains copper from Atox1 as well as translocation of ATP7A to plasma membranes where it colocalizes with SOD3. As its consequence, Ang II decreases vascular copper levels, which is inhibited in Atox1−/− mice. In summary, Atox1 functions to prevent Ang II-induced endothelial dysfunction and hyper-contraction in resistant vessels as well as hypertension in vivo by reducing extracellular O2•− levels via increasing vascular SOD3 expression and activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.