The adenomatous polyposis coli gene (APC) is mutated in familial adenomatous polyposis and in sporadic colorectal tumors, and its product binds to the adherens junction protein beta-catenin. Overexpression of APC blocks cell cycle progression. The APC-beta-catenin complex was shown to bind to DLG, the human homolog of the Drosophila discs large tumor suppressor protein. This interaction required the carboxyl-terminal region of APC and the DLG homology repeat region of DLG. APC colocalized with DLG at the lateral cytoplasm in rat colon epithelial cells and at the synapse in cultured hippocampal neurons. These results suggest that the APC-DLG complex may participate in regulation of both cell cycle progression and neuronal function.
Cancer cells alter their metabolism for the production of precursors of macromolecules. However, the control mechanisms underlying this reprogramming are poorly understood. Here we show that metabolic reprogramming of colorectal cancer is caused chiefly by aberrant MYC expression. Multiomics-based analyses of paired normal and tumor tissues from 275 patients with colorectal cancer revealed that metabolic alterations occur at the adenoma stage of carcinogenesis, in a manner not associated with specific gene mutations involved in colorectal carcinogenesis. MYC expression induced at least 215 metabolic reactions by changing the expression levels of 121 metabolic genes and 39 transporter genes. Further, MYC negatively regulated the expression of genes involved in mitochondrial biogenesis and maintenance but positively regulated genes involved in DNA and histone methylation. Knockdown of MYC in colorectal cancer cells reset the altered metabolism and suppressed cell growth. Moreover, inhibition of MYC target pyrimidine synthesis genes such as CAD, UMPS, and CTPS blocked cell growth, and thus are potential targets for colorectal cancer therapy.ne of the prominent characteristics of rapidly growing tumor cells is their capacity to sustain high rates of glycolysis for ATP generation irrespective of oxygen availability, termed the Warburg effect (1). Recent studies have shown that cancer cells shift metabolic pathways to facilitate the uptake and incorporation of abundant nutrients, such as glucose and glutamine (2, 3), into cell building blocks, such as nucleotides, amino acids, and lipids, that are essential for highly proliferating cells (4). This seems to be a universal characteristic of highly malignant tumors (5), independent of their carcinogenetic origin (6). Understanding how cancer cells reprogram metabolism can stimulate the development of new approaches in cancer therapy.Although there is now substantial information about how these pathways are regulated, most existing studies on cancer metabolism have used in vitro cell lines. In addition to genetic and epigenetic alterations, altered tumor microenvironment (e.g., blood flow, oxygen and nutrient supply, pH distribution, redox state, and inflammation) plays a profound role in modulating tumor cell metabolism (7-9). Therefore, a systematic characterization of in vivo metabolic pathways was deemed necessary to understand how metabolic phenotypes are regulated in intact human tumors.Here we applied multiomics-based approaches [i.e., metabolomics, target sequencing of cancer-related genes, transcriptomics, and methylated DNA immunoprecipitation sequencing (MeDIPseq)] to paired normal and tumor tissues obtained from 275 patients with colorectal cancer (CRC) and uncovered the details of which factors contributed, and when they contributed, to metabolic reprogramming in colorectal cancer. The results were confirmed by analysis of colorectal tissue from Apc mutant mice and cancer cell lines.
Transforming growth factor-beta (TGF-beta) is a multifunctional cytokine of key importance for controlling embryogenesis and tissue homeostasis. How TGF-beta signals are attenuated and terminated is not well understood. Here, we show that TMEPAI, a direct target gene of TGF-beta signaling, antagonizes TGF-beta signaling by interfering with TGF-beta type I receptor (TbetaRI)-induced R-Smad phosphorylation. TMEPAI can directly interact with R-Smads via a Smad interaction motif. TMEPAI competes with Smad anchor for receptor activation for R-Smad binding, thereby sequestering R-Smads from TbetaRI kinase activation. In mammalian cells, ectopic expression of TMEPAI inhibited TGF-beta-dependent regulation of plasminogen activator inhibitor-1, JunB, cyclin-dependent kinase inhibitors, and c-myc expression, whereas specific knockdown of TMEPAI expression prolonged duration of TGF-beta-induced Smad2 and Smad3 phosphorylation and concomitantly potentiated cellular responsiveness to TGF-beta. Consistently, TMEPAI inhibits activin-mediated mesoderm formation in Xenopus embryos. Therefore, TMEPAI participates in a negative feedback loop to control the duration and intensity of TGF-beta/Smad signaling.
-Catenin is a key player in the Wnt signaling pathway, and interacts with cofactor T cell factor/lymphoid enhancer factor (TCF/LEF) to generate a transcription activator complex that activates Wnt-induced genes. We previously reported that Nemo-like kinase (NLK) negatively regulates Wnt signaling via phosphorylation of TCF/LEF. To further evaluate the physiological roles of NLK, we performed yeast two-hybrid screening to identify NLK-interacting proteins. From this screen, we isolated a novel RING finger protein that we term NARF (NLK associated RING finger protein). Here, we show that NARF induces the ubiquitylation of TCF/LEF in vitro and in vivo, and functions as an E3 ubiquitin-ligase that specifically cooperates with the E2 conjugating enzyme E2-25K. We found that NLK augmented NARF binding and ubiquitylation of TCF/LEF, and this required NLK kinase activity. The ubiquitylated TCF/LEF was subsequently degraded by the proteasome. Furthermore, NARF inhibited formation of the secondary axis induced by the ectopic expression of -catenin in Xenopus embryos. Collectively, our findings raise the possibility that NARF functions as a novel ubiquitin-ligase to suppress the Wnt--catenin signaling.The Wnt family of signaling proteins constitutes a large group of highly conserved secreted glycoproteins (1). Wnt proteins are pleiotropic factors that play crucial roles in multiple embryonic developmental processes and also play a role in tumorigenesis (1, 2). Wnt proteins initiate signal transduction via their extracellular surface receptor complex, which is composed of Frizzled proteins (Fz) and lipoprotein receptor-related proteins 5 and 6 (LRP-5/6). In the absence of Wnt stimulation, cytoplasmic -catenin is maintained at low levels by the continuous process of ubiquitin-proteasome-mediated degradation involving a scaffold complex of axin, adenomatous polyposis coli, (APC) and active glycogen synthasekinase-3 (GSK-3). In the canonical pathway of -catenin signal transduction, Wnt signaling relieves this process of proteasome-mediated degradation, and -catenin consequently accumulates in the cytoplasm. -Catenin then translocates into the nucleus and forms a transcriptional unit with the HMG box class T cell factor/lymphoid enhancer factor (TCF/LEF) 3 to activate expression of its target genes.Nemo-like kinase (NLK) was originally isolated as a murine orthologue of the Drosophila Nemo by RT-PCR from embryonic mouse brain mRNA using degenerate primers designed for the conserved kinase domains I, VI, VII, and IX of the extracellular-signal regulated kinase/mitogen-activated protein kinase (ERK/MAPK) family (3). The amino acid sequence of the NLK kinase domain shows 39 -47% identity to both ERK/ MAPK and cyclin-directed kinase 2. The ERK/MAPK family kinases contain a characteristic conserved phosphorylation motif, Thr-X-Tyr, in their kinase domain VIII that is required for activation. However, the corresponding sequence in NLK is Thr-Gln-Glu, which is quite similar to the sequence Thr-HisGlu found in some cyclin-dire...
Background: The human homologue of the Drosophila discs large tumour suppressor protein (hDLG) and closely related proteins such as postsynaptic density protein 95 kDa (PSD-95) are associated with N-methyl-D-aspartate receptors (NMDA-R) and Shaker-type K þ channels, and are thought to be involved in their clustering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.