The quality control mechanism in the endoplasmic reticulum (ER) discriminates correctly folded proteins from misfolded polypeptides and determines their fate. Terminally misfolded proteins are retrotranslocated from the ER and degraded by cytoplasmic proteasomes, a mechanism known as ER-associated degradation (ERAD). We report the cDNA cloning of Edem, a mouse gene encoding a putative type II ER transmembrane protein. Expression of Edem mRNA was induced by various types of ER stress. Although the luminal region of ER degradation enhancing α-mannosidase-like protein (EDEM) is similar to class I α1,2-mannosidases involved in N-glycan processing, EDEM did not have enzymatic activity. Overexpression of EDEM in human embryonic kidney 293 cells accelerated the degradation of misfolded α1-antitrypsin, and EDEM bound to this misfolded glycoprotein. The results suggest that EDEM is directly involved in ERAD, and targets misfolded glycoproteins for degradation in an N-glycan dependent manner.
Recent studies have shown that Notch signaling plays an important role in epidermal development, but the underlying molecular mechanisms remain unclear. Here, by integrating loss- and gain-of-function studies of Notch receptors and Hes1, we describe molecular information about the role of Notch signaling in epidermal development. We show that Notch signaling determines spinous cell fate and induces terminal differentiation by a mechanism independent of Hes1, but Hes1 is required for maintenance of the immature state of spinous cells. Notch signaling induces Ascl2 expression to promote terminal differentiation, while simultaneously repressing Ascl2 through Hes1 to inhibit premature terminal differentiation. Despite the critical role of Hes1 in epidermal development, Hes1 null epidermis transplanted to adult mice showed no obvious defects, suggesting that this role of Hes1 may be restricted to developmental stages. Overall, we conclude that Notch signaling orchestrates the balance between differentiation and immature programs in suprabasal cells during epidermal development.
Mammals generate external coloration via dedicated pigment-producing cells but arrange pigment into patterns through mechanisms largely unknown. Here, using mice as models, we show that patterns ultimately emanate from dedicated pigment-receiving cells. These pigment recipients are epithelial cells that recruit melanocytes to their position in the skin and induce the transfer of melanin. We identify Foxn1 (a transcription factor) as an activator of this "pigment recipient phenotype" and Fgf2 (a growth factor and Foxn1 target) as a signal released by recipients. When Foxn1 - and thus dedicated recipients - are redistributed in the skin, new patterns of pigmentation develop, suggesting a mechanism for the evolution of coloration. We conclude that recipients provide a cutaneous template or blueprint that instructs melanocytes where to place pigment. As Foxn1 and Fgf2 also modulate epithelial growth and differentiation, the Foxn1 pathway should serve as a nexus coordinating cell division, differentiation, and pigmentation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.