The Architecture, Engineering, Construction, and Facility Management (AEC-FM) industry is increasingly affected by digital technologies that monitor sensor network data and control automation systems. Advances in digital technologies like Digital Twin offer a high-level representation of buildings and their assets by integrating the physical and digital world. This paper examines patterns, gaps, and trends in the AEC-FM sector and contributes to digitalization and automation solutions for building management. This work covers a broad range of research topics, from intelligent information management of complex models to building information management and the interaction of building systems, where researchers are increasingly interested in using the Digital Twin to manage their information and in developing new research lines focused on data interchange and the interoperability of building information modeling (BIM) and facility management (FM). After a complete bibliometric search of several databases and following selection criteria, 77 academic publications about the Digital Twin application in the AEC-FM industry were labeled and clustered accordingly. This study analyzed in detail the concept of key technologies, including “Digital Twin in Facility Lifecycle Management,” “Digital Twin-Information Integration Standards,” “Digital Twin-Based Occupants Centric Building Design,” “Digital Twin-Based Predictive Maintenance,” “Semantic Digital Twin for Facility Maintenance,” and “Digital Twin-Based Human Knowledge.” The findings show that information standardization is the first major hurdle that must be overcome before the actual use of Digital Twin can be realized in the AEC-FM industry. Based on that, this paper provides a conceptual framework of Digital Twin for building management as a starting point for future research.
Crossdomain analytical techniques have made the prediction of outcomes in building design more accurate. Yet, many decisions are based on rules of thumb and previous experiences, and not on documented evidence. That results in inaccurate predictions and a difference between predicted and actual building performance. This article aims to reduce the occurrence of such errors using a combination of data mining and semantic modelling techniques, by deploying these technologies in a use case, for which sensor data is collected. The results present a semantic building data graph enriched with discovered motifs and association rules in observed properties. We conclude that the combination of semantic modelling and data mining techniques can contribute to creating a repository of building data for design decision support.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.