This paper investigates the usability of spring which exhibit nonlinear force-deflection characteristic in the area of mathematical modeling of vehicle crash. We present a method which allows us to obtain parameters of the spring-mass model basing on the fullscale experimental data analysis. Since vehicle collision is a dynamic event, it involves such phenomena as rebound and energy dissipation. Three different spring unloading scenarios (elastic, plastic, and elasto-plastic) are covered and their suitability for vehicle collision simulation is evaluated. Subsequently we assess which of those models fits the best to the real car's behavior not only in terms of kinematic responses but also in terms of energy distribution.
In this paper, we propose a method of modeling for vehicle crash systems based on viscous and elastic properties of the materials. This paper covers an influence of different arrangement of spring and damper on the models' response. Differences in simulating vehicle-torigid barrier collision and vehicle-to-pole collision are explained. Comparison of the models obtained from wideband (unfiltered) acceleration and filtered acceleration is done. At the end we propose a model which is suitable for localized collisions simulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.